Dressed return maps distinguish chaotic mechanisms

Chaotic data generated by a three-dimensional dynamical system can be embedded into R(3) in a number of inequivalent ways. However, when lifted into R(5) they all become equivalent, indicating that they all belong to a single universality class sharing a common chaos-generating mechanism. We present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-01, Vol.87 (1), p.012919-012919, Article 012919
Hauptverfasser: Cross, Daniel J, Gilmore, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chaotic data generated by a three-dimensional dynamical system can be embedded into R(3) in a number of inequivalent ways. However, when lifted into R(5) they all become equivalent, indicating that they all belong to a single universality class sharing a common chaos-generating mechanism. We present a complete invariant determining this universality class and distinguishing attractors generated by distinct mechanisms. This invariant is easily computable from an appropriately "dressed" return map of any particular three-dimensional embedding.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.87.012919