In vitro and in vivo hemostatic capabilities of a functionally integrated platelet-mimetic liposomal nanoconstruct

Abstract There is significant clinical interest in synthetic platelet substitutes that can mimic platelet's hemostastic functionalities while allowing scale-up, minimal biological contamination, and long shelf-life. To this end, mimicking active platelet's hemostatically relevant matrix-ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2013-04, Vol.34 (12), p.3031-3041
Hauptverfasser: Modery-Pawlowski, Christa L, Tian, Lewis L, Ravikumar, Madhumitha, Wong, Timothy L, Gupta, Anirban Sen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract There is significant clinical interest in synthetic platelet substitutes that can mimic platelet's hemostastic functionalities while allowing scale-up, minimal biological contamination, and long shelf-life. To this end, mimicking active platelet's hemostatically relevant matrix-adhesion properties and aggregation properties independently and then integrating them via heteromultivalent ligand decoration on a single synthetic particle can lead to an efficient platelet substitute design. We have recently reported on the feasibility of this approach in vitro , using liposomes as model particles. Building on these studies, here we demonstrate the capability of optimizing the platelet-mimetic properties of our liposomal constructs in vitro via modulating the ligand-decoration densities and ligand ratios. In addition, we demonstrate the enhanced hemostatic efficacy of the functionally-integrated platelet-mimetic constructs in vivo . Liposomes were surface-decorated with collagen- and VWF-binding peptides (CBP and VBP) to mimic platelet adhesion and a fibrinogen-mimetic peptide (FMP) to promote platelet aggregation. Modulation of VBP- and CBP-densities and relative ratios enabled optimizing construct adhesion under varying shear-flow conditions. Modulation of FMP-density enabled enhancement of construct-promoted platelet aggregation. The VBP-, CBP- and FMP-decorations were integrated on a single liposome, and these functionally-integrated constructs showed significantly higher hemostatic efficacy in vivo in a mouse tail-transection model compared to ‘adhesion-only’ or ‘aggregation-only’ constructs.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2012.12.045