Experimental optimization of the optical and electrical properties of a half-wavelength-thick organic hetero-structure in a Micro-cavity
In the context of progress towards the organic laser diode, we experimentally investigate the optical and electrical optimization of an OLED in a vertical λ/2 microcavity. The microcavity consists of a quarter-wavelength TiO₂/SiO₂ multilayer mirror, a half-wavelength-thick OLED and a semitransparent...
Gespeichert in:
Veröffentlicht in: | Optics express 2012-12, Vol.20 (28), p.29252-29259 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the context of progress towards the organic laser diode, we experimentally investigate the optical and electrical optimization of an OLED in a vertical λ/2 microcavity. The microcavity consists of a quarter-wavelength TiO₂/SiO₂ multilayer mirror, a half-wavelength-thick OLED and a semitransparent aluminum cathode. The Alq3/DCM2 guest-host system is used as the emitting layer. This study focuses on the design and the fabrication of a half-wavelength thick organic hetero-structure exhibiting a high current density despite both the thickness increase and the cathode thickness reduction. The emission wavelength, the line-width narrowing and the current-density are studied as a function of two key parameters: the hetero-structure optical thickness and the aluminum cathode thickness. The experimental results show that a 125 nm thick cavity OLED ended by a 20 nm thick aluminum cathode exhibits a resonance at 606 nm with a full width at half maximum of 11 nm, and with current-densities exceeding 0.5 A/cm². We show that even without a top high-quality-mirror the incomplete microcavity λ/2 OLED hetero-structure exhibits a clear modification of the spontaneous emission at normal incidence. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.20.029252 |