Experimental optimization of the optical and electrical properties of a half-wavelength-thick organic hetero-structure in a Micro-cavity

In the context of progress towards the organic laser diode, we experimentally investigate the optical and electrical optimization of an OLED in a vertical λ/2 microcavity. The microcavity consists of a quarter-wavelength TiO₂/SiO₂ multilayer mirror, a half-wavelength-thick OLED and a semitransparent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2012-12, Vol.20 (28), p.29252-29259
Hauptverfasser: Coens, A, Chakaroun, M, Fischer, A P A, Lee, M W, Boudrioua, A, Geffroy, B, Vemuri, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of progress towards the organic laser diode, we experimentally investigate the optical and electrical optimization of an OLED in a vertical λ/2 microcavity. The microcavity consists of a quarter-wavelength TiO₂/SiO₂ multilayer mirror, a half-wavelength-thick OLED and a semitransparent aluminum cathode. The Alq3/DCM2 guest-host system is used as the emitting layer. This study focuses on the design and the fabrication of a half-wavelength thick organic hetero-structure exhibiting a high current density despite both the thickness increase and the cathode thickness reduction. The emission wavelength, the line-width narrowing and the current-density are studied as a function of two key parameters: the hetero-structure optical thickness and the aluminum cathode thickness. The experimental results show that a 125 nm thick cavity OLED ended by a 20 nm thick aluminum cathode exhibits a resonance at 606 nm with a full width at half maximum of 11 nm, and with current-densities exceeding 0.5 A/cm². We show that even without a top high-quality-mirror the incomplete microcavity λ/2 OLED hetero-structure exhibits a clear modification of the spontaneous emission at normal incidence.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.20.029252