Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008

The impacts of the thermal forcing over the Tibetan Plateau (TP) in spring on changes in summer rainfall in China are investigated using historical records from the period between 1980 and 2008. The spring sensible heat (SH) flux and snow depth over the TP both decreased over this time period, altho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2013-01, Vol.26 (1), p.261-275
Hauptverfasser: Duan, Anmin, Wang, Meirong, Lei, Yonghui, Cui, Yangfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 1
container_start_page 261
container_title Journal of climate
container_volume 26
creator Duan, Anmin
Wang, Meirong
Lei, Yonghui
Cui, Yangfan
description The impacts of the thermal forcing over the Tibetan Plateau (TP) in spring on changes in summer rainfall in China are investigated using historical records from the period between 1980 and 2008. The spring sensible heat (SH) flux and snow depth over the TP both decreased over this time period, although the trend in SH was more significant than that in snow depth. The similarity between patterns of precipitation trends over China and corresponding patterns of regression coefficients on the leading mode of spring SH change over the TP demonstrates the distinct contribution of changes in TP SH during spring. Enhanced precipitation in southern China was accompanied by increases in heavy rainfall, precipitation intensity, and the frequency of precipitation events, while reduced precipitation in northern China and northeastern China was primarily associated with decreases in the frequency of precipitation events. Further analysis using observational data and numerical simulations reveals that the reductions in SH over the TP have weakened the monsoon circulation and postponed the seasonal reversal of the land–sea thermal contrast in East Asia. In addition, the positive spring SH anomaly may generate a stronger summer atmospheric heat source over the TP due to the positive feedback between diabatic heating and local circulation.
doi_str_mv 10.1175/JCLI-D-11-00669.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285093235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26192143</jstor_id><sourcerecordid>26192143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fa477d4d96adbe0e93b6c6cee4d34ae9737be0291589669d4c01c6cbd3abbf213</originalsourceid><addsrcrecordid>eNp9kcGKFDEQhhtRcFx9AA9CQAQvvVYl6U7nuMyquzKgOOM5pNPVToae9Jh0r3jzHXzDfZLNOIuCB09Jqr58VPEXxXOEc0RVvfmwXF2XlyViCVDX-hwfFAusOJQgJX9YLKDRsmxUVT0unqS0A0BeAyyKwyZS6BLzga3n_Z4i-2x96O0wsPEmv5ZbHyy7SGl03k7Use9-2rJpS2zjW5psYJ-GXLczW1NIvh2IXZGd2HqcoyPWzdGHrwx1A7c_f3GA5mnxKNsTPbs_z4ov795ullfl6uP76-XFqnRSyKnsrVSqk52ubdcSkBZt7WpHJDshLWklVC5zjVWj876ddIC533bCtm3PUZwVr0_eQxy_zZQms_fJ0TDYQOOcDPKmAi24qDL68h90l6cPeTrDGxRaSYH4PwoFKglNrY8uPFEujilF6s0h-r2NPwyCOSZljkmZy3w3v5MyR_Ore7NNzg59tMH59OcjVyiqGkTmXpy4XZrG-Ldfo-YohbgDCv2cAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317408695</pqid></control><display><type>article</type><title>Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008</title><source>American Meteorological Society</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Duan, Anmin ; Wang, Meirong ; Lei, Yonghui ; Cui, Yangfan</creator><creatorcontrib>Duan, Anmin ; Wang, Meirong ; Lei, Yonghui ; Cui, Yangfan</creatorcontrib><description>The impacts of the thermal forcing over the Tibetan Plateau (TP) in spring on changes in summer rainfall in China are investigated using historical records from the period between 1980 and 2008. The spring sensible heat (SH) flux and snow depth over the TP both decreased over this time period, although the trend in SH was more significant than that in snow depth. The similarity between patterns of precipitation trends over China and corresponding patterns of regression coefficients on the leading mode of spring SH change over the TP demonstrates the distinct contribution of changes in TP SH during spring. Enhanced precipitation in southern China was accompanied by increases in heavy rainfall, precipitation intensity, and the frequency of precipitation events, while reduced precipitation in northern China and northeastern China was primarily associated with decreases in the frequency of precipitation events. Further analysis using observational data and numerical simulations reveals that the reductions in SH over the TP have weakened the monsoon circulation and postponed the seasonal reversal of the land–sea thermal contrast in East Asia. In addition, the positive spring SH anomaly may generate a stronger summer atmospheric heat source over the TP due to the positive feedback between diabatic heating and local circulation.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-11-00669.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospheric aerosols ; Atmospheric circulation ; Atmospheric models ; Atmospheric sciences ; Atmospherics ; China ; Circulation ; Climate change ; Coefficients ; Diabatic heating ; Earth, ocean, space ; Enthalpy ; Exact sciences and technology ; Experiments ; External geophysics ; Fluid dynamics ; General circulation models ; Heat ; Heavy rainfall ; Humidity ; Meteorology ; Moisture content ; Monsoon circulation ; Monsoons ; Numerical simulations ; Positive feedback ; Precipitation ; Precipitation trends ; Rain ; Rainfall ; Rainfall intensity ; Regression coefficients ; Seasons ; Sensible heat ; Snow ; Snow accumulation ; Snow depth ; Spring ; Spring (season) ; Springs (elastic) ; Studies ; Summer ; Summer rainfall ; Trends ; Water in the atmosphere (humidity, clouds, evaporation, precipitation) ; Wind</subject><ispartof>Journal of climate, 2013-01, Vol.26 (1), p.261-275</ispartof><rights>2013 American Meteorological Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jan 1, 2013</rights><rights>Copyright American Meteorological Society 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fa477d4d96adbe0e93b6c6cee4d34ae9737be0291589669d4c01c6cbd3abbf213</citedby><cites>FETCH-LOGICAL-c434t-fa477d4d96adbe0e93b6c6cee4d34ae9737be0291589669d4c01c6cbd3abbf213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26192143$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26192143$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,3668,4010,27904,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27135603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Anmin</creatorcontrib><creatorcontrib>Wang, Meirong</creatorcontrib><creatorcontrib>Lei, Yonghui</creatorcontrib><creatorcontrib>Cui, Yangfan</creatorcontrib><title>Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008</title><title>Journal of climate</title><description>The impacts of the thermal forcing over the Tibetan Plateau (TP) in spring on changes in summer rainfall in China are investigated using historical records from the period between 1980 and 2008. The spring sensible heat (SH) flux and snow depth over the TP both decreased over this time period, although the trend in SH was more significant than that in snow depth. The similarity between patterns of precipitation trends over China and corresponding patterns of regression coefficients on the leading mode of spring SH change over the TP demonstrates the distinct contribution of changes in TP SH during spring. Enhanced precipitation in southern China was accompanied by increases in heavy rainfall, precipitation intensity, and the frequency of precipitation events, while reduced precipitation in northern China and northeastern China was primarily associated with decreases in the frequency of precipitation events. Further analysis using observational data and numerical simulations reveals that the reductions in SH over the TP have weakened the monsoon circulation and postponed the seasonal reversal of the land–sea thermal contrast in East Asia. In addition, the positive spring SH anomaly may generate a stronger summer atmospheric heat source over the TP due to the positive feedback between diabatic heating and local circulation.</description><subject>Atmospheric aerosols</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Atmospheric sciences</subject><subject>Atmospherics</subject><subject>China</subject><subject>Circulation</subject><subject>Climate change</subject><subject>Coefficients</subject><subject>Diabatic heating</subject><subject>Earth, ocean, space</subject><subject>Enthalpy</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>General circulation models</subject><subject>Heat</subject><subject>Heavy rainfall</subject><subject>Humidity</subject><subject>Meteorology</subject><subject>Moisture content</subject><subject>Monsoon circulation</subject><subject>Monsoons</subject><subject>Numerical simulations</subject><subject>Positive feedback</subject><subject>Precipitation</subject><subject>Precipitation trends</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall intensity</subject><subject>Regression coefficients</subject><subject>Seasons</subject><subject>Sensible heat</subject><subject>Snow</subject><subject>Snow accumulation</subject><subject>Snow depth</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Springs (elastic)</subject><subject>Studies</subject><subject>Summer</subject><subject>Summer rainfall</subject><subject>Trends</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><subject>Wind</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kcGKFDEQhhtRcFx9AA9CQAQvvVYl6U7nuMyquzKgOOM5pNPVToae9Jh0r3jzHXzDfZLNOIuCB09Jqr58VPEXxXOEc0RVvfmwXF2XlyViCVDX-hwfFAusOJQgJX9YLKDRsmxUVT0unqS0A0BeAyyKwyZS6BLzga3n_Z4i-2x96O0wsPEmv5ZbHyy7SGl03k7Use9-2rJpS2zjW5psYJ-GXLczW1NIvh2IXZGd2HqcoyPWzdGHrwx1A7c_f3GA5mnxKNsTPbs_z4ov795ullfl6uP76-XFqnRSyKnsrVSqk52ubdcSkBZt7WpHJDshLWklVC5zjVWj876ddIC533bCtm3PUZwVr0_eQxy_zZQms_fJ0TDYQOOcDPKmAi24qDL68h90l6cPeTrDGxRaSYH4PwoFKglNrY8uPFEujilF6s0h-r2NPwyCOSZljkmZy3w3v5MyR_Ore7NNzg59tMH59OcjVyiqGkTmXpy4XZrG-Ldfo-YohbgDCv2cAA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Duan, Anmin</creator><creator>Wang, Meirong</creator><creator>Lei, Yonghui</creator><creator>Cui, Yangfan</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008</title><author>Duan, Anmin ; Wang, Meirong ; Lei, Yonghui ; Cui, Yangfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fa477d4d96adbe0e93b6c6cee4d34ae9737be0291589669d4c01c6cbd3abbf213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric aerosols</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Atmospheric sciences</topic><topic>Atmospherics</topic><topic>China</topic><topic>Circulation</topic><topic>Climate change</topic><topic>Coefficients</topic><topic>Diabatic heating</topic><topic>Earth, ocean, space</topic><topic>Enthalpy</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>General circulation models</topic><topic>Heat</topic><topic>Heavy rainfall</topic><topic>Humidity</topic><topic>Meteorology</topic><topic>Moisture content</topic><topic>Monsoon circulation</topic><topic>Monsoons</topic><topic>Numerical simulations</topic><topic>Positive feedback</topic><topic>Precipitation</topic><topic>Precipitation trends</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall intensity</topic><topic>Regression coefficients</topic><topic>Seasons</topic><topic>Sensible heat</topic><topic>Snow</topic><topic>Snow accumulation</topic><topic>Snow depth</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Springs (elastic)</topic><topic>Studies</topic><topic>Summer</topic><topic>Summer rainfall</topic><topic>Trends</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Anmin</creatorcontrib><creatorcontrib>Wang, Meirong</creatorcontrib><creatorcontrib>Lei, Yonghui</creatorcontrib><creatorcontrib>Cui, Yangfan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Anmin</au><au>Wang, Meirong</au><au>Lei, Yonghui</au><au>Cui, Yangfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008</atitle><jtitle>Journal of climate</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>26</volume><issue>1</issue><spage>261</spage><epage>275</epage><pages>261-275</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The impacts of the thermal forcing over the Tibetan Plateau (TP) in spring on changes in summer rainfall in China are investigated using historical records from the period between 1980 and 2008. The spring sensible heat (SH) flux and snow depth over the TP both decreased over this time period, although the trend in SH was more significant than that in snow depth. The similarity between patterns of precipitation trends over China and corresponding patterns of regression coefficients on the leading mode of spring SH change over the TP demonstrates the distinct contribution of changes in TP SH during spring. Enhanced precipitation in southern China was accompanied by increases in heavy rainfall, precipitation intensity, and the frequency of precipitation events, while reduced precipitation in northern China and northeastern China was primarily associated with decreases in the frequency of precipitation events. Further analysis using observational data and numerical simulations reveals that the reductions in SH over the TP have weakened the monsoon circulation and postponed the seasonal reversal of the land–sea thermal contrast in East Asia. In addition, the positive spring SH anomaly may generate a stronger summer atmospheric heat source over the TP due to the positive feedback between diabatic heating and local circulation.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-11-00669.1</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2013-01, Vol.26 (1), p.261-275
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1285093235
source American Meteorological Society; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals
subjects Atmospheric aerosols
Atmospheric circulation
Atmospheric models
Atmospheric sciences
Atmospherics
China
Circulation
Climate change
Coefficients
Diabatic heating
Earth, ocean, space
Enthalpy
Exact sciences and technology
Experiments
External geophysics
Fluid dynamics
General circulation models
Heat
Heavy rainfall
Humidity
Meteorology
Moisture content
Monsoon circulation
Monsoons
Numerical simulations
Positive feedback
Precipitation
Precipitation trends
Rain
Rainfall
Rainfall intensity
Regression coefficients
Seasons
Sensible heat
Snow
Snow accumulation
Snow depth
Spring
Spring (season)
Springs (elastic)
Studies
Summer
Summer rainfall
Trends
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
Wind
title Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trends%20in%20Summer%20Rainfall%20over%20China%20Associated%20with%20the%20Tibetan%20Plateau%20Sensible%20Heat%20Source%20during%201980%E2%80%932008&rft.jtitle=Journal%20of%20climate&rft.au=Duan,%20Anmin&rft.date=2013-01-01&rft.volume=26&rft.issue=1&rft.spage=261&rft.epage=275&rft.pages=261-275&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-11-00669.1&rft_dat=%3Cjstor_proqu%3E26192143%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317408695&rft_id=info:pmid/&rft_jstor_id=26192143&rfr_iscdi=true