Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008

The impacts of the thermal forcing over the Tibetan Plateau (TP) in spring on changes in summer rainfall in China are investigated using historical records from the period between 1980 and 2008. The spring sensible heat (SH) flux and snow depth over the TP both decreased over this time period, altho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2013-01, Vol.26 (1), p.261-275
Hauptverfasser: Duan, Anmin, Wang, Meirong, Lei, Yonghui, Cui, Yangfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impacts of the thermal forcing over the Tibetan Plateau (TP) in spring on changes in summer rainfall in China are investigated using historical records from the period between 1980 and 2008. The spring sensible heat (SH) flux and snow depth over the TP both decreased over this time period, although the trend in SH was more significant than that in snow depth. The similarity between patterns of precipitation trends over China and corresponding patterns of regression coefficients on the leading mode of spring SH change over the TP demonstrates the distinct contribution of changes in TP SH during spring. Enhanced precipitation in southern China was accompanied by increases in heavy rainfall, precipitation intensity, and the frequency of precipitation events, while reduced precipitation in northern China and northeastern China was primarily associated with decreases in the frequency of precipitation events. Further analysis using observational data and numerical simulations reveals that the reductions in SH over the TP have weakened the monsoon circulation and postponed the seasonal reversal of the land–sea thermal contrast in East Asia. In addition, the positive spring SH anomaly may generate a stronger summer atmospheric heat source over the TP due to the positive feedback between diabatic heating and local circulation.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-11-00669.1