Delocalization of femtosecond radiation in silicon

The processes, induced by local action of the IR femtosecond laser pulse (λ=1.2 μm, τ=250 fs) in the bulk of silicon monocrystal, are studied. Infrared femtosecond interferometry was for the first time applied for visualization of beam propagation inside opaque materials. Dependences of laser-induce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2012-08, Vol.37 (16), p.3369-3371
Hauptverfasser: Kononenko, Vitali V, Konov, Vitali V, Dianov, Evgeny M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The processes, induced by local action of the IR femtosecond laser pulse (λ=1.2 μm, τ=250 fs) in the bulk of silicon monocrystal, are studied. Infrared femtosecond interferometry was for the first time applied for visualization of beam propagation inside opaque materials. Dependences of laser-induced variation of material polarizability on pulse energy were obtained and essential wave-packet spreading in space was revealed. This leads to huge delocalization of light-scattering outside the beam caustic exceeds 99% of pulse energy. This effect results in extremely high optical damage threshold of crystalline silicon bulk-irreversible changes in material structure and optical properties were not observed for pulse energy up to 90 μJ. The role of beam Kerr self-focusing and defocusing by an electron-hole plasma inside c:Si is discussed.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.37.003369