Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair

Corneal stem cell niches are located within the limbus of the eye and are believed to play an important role in corneal regeneration. These niches are often lost in corneal disease or trauma. Our work explores the design of artificial limbal stem cell niches by the fabrication of biodegradable elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2013-03, Vol.9 (3), p.5511-5520
Hauptverfasser: Ortega, Ílida, Ryan, Anthony J., Deshpande, Pallavi, MacNeil, Sheila, Claeyssens, Frederik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Corneal stem cell niches are located within the limbus of the eye and are believed to play an important role in corneal regeneration. These niches are often lost in corneal disease or trauma. Our work explores the design of artificial limbal stem cell niches by the fabrication of biodegradable electrospun rings containing bespoke microfeatures. In creating artificial niches, we seek to provide a physically protective environment for limbal cells to act as a cell reservoir for tissue regeneration purposes. This study describes the first step in this challenge to produce structures which structurally approximate to the limbal niches. This was achieved using a combination of electrospinning and microfabrication. Initial microfabricated structures were developed using microstereolithography via a layer-by-layer photocuring approach based on the patterning of photocurable polymers, in this case polyethylene glycol diacrylate. This was then used as a template on which to electrospin a biodegradable membrane of poly(lactic-co-glycolic acid) 50:50, which incorporates the features of the underlying microfabricated structures. The study describes preliminary evaluation of these constructs using rabbit limbal epithelial and stromal cells.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2012.10.039