Laser-driven proton acceleration enhancement by nanostructured foils
Nanostructured thin plastic foils have been used to enhance the mechanism of laser-driven proton beam acceleration. In particular, the presence of a monolayer of polystyrene nanospheres on the target front side has drastically enhanced the absorption of the incident 100 TW laser beam, leading to a c...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-12, Vol.109 (23), p.234801-234801, Article 234801 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanostructured thin plastic foils have been used to enhance the mechanism of laser-driven proton beam acceleration. In particular, the presence of a monolayer of polystyrene nanospheres on the target front side has drastically enhanced the absorption of the incident 100 TW laser beam, leading to a consequent increase in the maximum proton energy and beam charge. The cutoff energy increased by about 60% for the optimal spheres' diameter of 535 nm in comparison to the planar foil. The total number of protons with energies higher than 1 MeV was increased approximately 5 times. To our knowledge this is the first experimental demonstration of such advanced target geometry. Experimental results are interpreted and discussed by means of 2(1/2)-dimensional particle-in-cell simulations. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.109.234801 |