Problem for the diffusion equation outside cuts on the plane with the Dirichlet condition and an oblique derivative condition on opposite sides of the cuts

We consider a boundary value problem for the stationary diffusion equation outside cuts on the plane. The Dirichlet condition is posed on one side of each cut, and an oblique derivative condition is posed on the other side. We prove existence and uniqueness theorems for the solution of the boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2012-09, Vol.48 (9), p.1197-1211
Hauptverfasser: Krutitskii, P. A., Prozorov, K. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a boundary value problem for the stationary diffusion equation outside cuts on the plane. The Dirichlet condition is posed on one side of each cut, and an oblique derivative condition is posed on the other side. We prove existence and uniqueness theorems for the solution of the boundary value problem. We obtain an integral representation of a solution in the form of potentials. The densities of these potentials are found from a system of Fredholm integral equations of the second kind, which is uniquely solvable. We obtain closed asymptotic formulas for the gradient of the solution of the boundary value problem at the endpoints of the cuts.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266112090017