PAN-based carbon fibers/PMMA composites: thermal, dielectric, and DC electrical properties

The study deals with thermal, dielectric, and DC electrical properties of polyacrylonitrile (PAN)-based carbon fibers/poly(methyl methacrylate) composites. The polymer composites contain 0, 5, 10, 20 and 30 wt.% PAN-based carbon fibers. The thermal conductivity was studied as a function of filler co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2012-12, Vol.23 (12), p.2117-2122
Hauptverfasser: Elimat, Z. M., Hussain, W. T., Zihlif, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study deals with thermal, dielectric, and DC electrical properties of polyacrylonitrile (PAN)-based carbon fibers/poly(methyl methacrylate) composites. The polymer composites contain 0, 5, 10, 20 and 30 wt.% PAN-based carbon fibers. The thermal conductivity was studied as a function of filler content and temperature. It was found that the thermal conductivity is enhanced by addition of carbon fibers concentration and temperature. The dielectric properties were determined using impedance measurements. The results showed that the dielectric constant and dielectric loss are decreased with frequency, and increased with both temperature and fibers content. The DC electrical conductivity, temperature coefficient of resistance, and activation energy were studied as a function of fibers concentration in the temperature ranges 30–110 °C. It was found that the composites exhibit negative temperature coefficient of resistivity and enhancement of electrical conductivity with increasing temperature and carbon fibers concentration. The observed increase in the DC conductivity was explained according to the approach of conductive paths and connections between the carbon fibers.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-012-0712-y