SIP: critical value functions have finite modulus of non-convexity

We consider semi-infinite programming problems depending on a finite dimensional parameter . Provided that is a strongly stable stationary point of , there exists a locally unique and continuous stationary point mapping . This defines the local critical value function , where denotes the objective f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2012-12, Vol.136 (1), p.133-154
Hauptverfasser: Dorsch, D., Guerra-Vázquez, F., Günzel, H., Jongen, H. Th, Rückmann, J.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider semi-infinite programming problems depending on a finite dimensional parameter . Provided that is a strongly stable stationary point of , there exists a locally unique and continuous stationary point mapping . This defines the local critical value function , where denotes the objective function of for a given parameter vector . We show that is the sum of a convex function and a smooth function. In particular, this excludes the appearance of negative kinks in the graph of .
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-012-0554-7