SIP: critical value functions have finite modulus of non-convexity
We consider semi-infinite programming problems depending on a finite dimensional parameter . Provided that is a strongly stable stationary point of , there exists a locally unique and continuous stationary point mapping . This defines the local critical value function , where denotes the objective f...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2012-12, Vol.136 (1), p.133-154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider semi-infinite programming problems
depending on a finite dimensional parameter
. Provided that
is a strongly stable stationary point of
, there exists a locally unique and continuous stationary point mapping
. This defines the local critical value function
, where
denotes the objective function of
for a given parameter vector
. We show that
is the sum of a convex function and a smooth function. In particular, this excludes the appearance of negative kinks in the graph of
. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-012-0554-7 |