Nordhaus-Gaddum Results for the Sum of the Induced Path Number of a Graph and Its Complement
The induced path number p(G) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a path. Broere et hi. proved that if G is a graph of order n, then 〈 p(G) + p(G) 〈3n/2] . In this paper,_we characterize [3n/2], improve...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2012-12, Vol.28 (12), p.2365-2372 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The induced path number p(G) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a path. Broere et hi. proved that if G is a graph of order n, then 〈 p(G) + p(G) 〈3n/2] . In this paper,_we characterize [3n/2], improve the lower bound on p(G) + p(G) by one when the graphs G for which p(G) -4- p(G) = 3n n is the square of an odd integer, and determine a best possible upper bound for p(G) + p(G) when neither G nor G has isolated vertices. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-012-0727-6 |