Minkowski Length of 3D Lattice Polytopes

We study the Minkowski length L ( P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2012-12, Vol.48 (4), p.1137-1158
Hauptverfasser: Beckwith, Olivia, Grimm, Matthew, Soprunova, Jenya, Weaver, Bradley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1158
container_issue 4
container_start_page 1137
container_title Discrete & computational geometry
container_volume 48
creator Beckwith, Olivia
Grimm, Matthew
Soprunova, Jenya
Weaver, Bradley
description We study the Minkowski length L ( P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P , and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a polytime algorithm for computing L ( P ) where P is a 3D lattice polytope. We next study 3D lattice polytopes of Minkowski length 1. In particular, we show that if Q , a subpolytope of P , is the Minkowski sum of L = L ( P ) lattice polytopes Q i , each of Minkowski length 1, then the total number of interior lattice points of the polytopes Q 1 ,…, Q L is at most 4. Both results extend previously known results for lattice polygons. Our methods differ substantially from those used in the two-dimensional case.
doi_str_mv 10.1007/s00454-012-9433-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283711994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823881231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-acf837ce3536ad221a19a84acafd1ccb06e2108b3b7ee927f04d256dcd504d873</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gisbAY7vwROyMqn1IQDDBbruOUtGlc4lSo_x5XYUBITHfD8766ewg5R7hCAHUdAYQUFJDRQnBO5QGZoOCMghDikEwAVUElV_kxOYlxCQkvQE_I5XPTrcJXXDVZ6bvF8JGFOuO3WWmHoXE-ew3tbggbH0_JUW3b6M9-5pS839-9zR5p-fLwNLspqeNCDNS6WnPlPJc8txVjaLGwWlhn6wqdm0PuGYKe87nyvmCqBlExmVeukmnTik_J5di76cPn1sfBrJvofNvazodtNMhSP2KRvpySiz_oMmz7Ll1nEqAwR63zROFIuT7E2PvabPpmbfudQTB7d2Z0Z5I7s3dnZMqwMRMT2y18_6v539A3_0BvMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1197161886</pqid></control><display><type>article</type><title>Minkowski Length of 3D Lattice Polytopes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Beckwith, Olivia ; Grimm, Matthew ; Soprunova, Jenya ; Weaver, Bradley</creator><creatorcontrib>Beckwith, Olivia ; Grimm, Matthew ; Soprunova, Jenya ; Weaver, Bradley</creatorcontrib><description>We study the Minkowski length L ( P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P , and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a polytime algorithm for computing L ( P ) where P is a 3D lattice polytope. We next study 3D lattice polytopes of Minkowski length 1. In particular, we show that if Q , a subpolytope of P , is the Minkowski sum of L = L ( P ) lattice polytopes Q i , each of Minkowski length 1, then the total number of interior lattice points of the polytopes Q 1 ,…, Q L is at most 4. Both results extend previously known results for lattice polygons. Our methods differ substantially from those used in the two-dimensional case.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-012-9433-5</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Combinatorics ; Computational Mathematics and Numerical Analysis ; Factorization ; Geometry ; Lattices ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polygons ; Polytopes ; Segments ; Three dimensional ; Vectors (mathematics)</subject><ispartof>Discrete &amp; computational geometry, 2012-12, Vol.48 (4), p.1137-1158</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Springer Science+Business Media New York 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-acf837ce3536ad221a19a84acafd1ccb06e2108b3b7ee927f04d256dcd504d873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-012-9433-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-012-9433-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Beckwith, Olivia</creatorcontrib><creatorcontrib>Grimm, Matthew</creatorcontrib><creatorcontrib>Soprunova, Jenya</creatorcontrib><creatorcontrib>Weaver, Bradley</creatorcontrib><title>Minkowski Length of 3D Lattice Polytopes</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>We study the Minkowski length L ( P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P , and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a polytime algorithm for computing L ( P ) where P is a 3D lattice polytope. We next study 3D lattice polytopes of Minkowski length 1. In particular, we show that if Q , a subpolytope of P , is the Minkowski sum of L = L ( P ) lattice polytopes Q i , each of Minkowski length 1, then the total number of interior lattice points of the polytopes Q 1 ,…, Q L is at most 4. Both results extend previously known results for lattice polygons. Our methods differ substantially from those used in the two-dimensional case.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Factorization</subject><subject>Geometry</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polygons</subject><subject>Polytopes</subject><subject>Segments</subject><subject>Three dimensional</subject><subject>Vectors (mathematics)</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gisbAY7vwROyMqn1IQDDBbruOUtGlc4lSo_x5XYUBITHfD8766ewg5R7hCAHUdAYQUFJDRQnBO5QGZoOCMghDikEwAVUElV_kxOYlxCQkvQE_I5XPTrcJXXDVZ6bvF8JGFOuO3WWmHoXE-ew3tbggbH0_JUW3b6M9-5pS839-9zR5p-fLwNLspqeNCDNS6WnPlPJc8txVjaLGwWlhn6wqdm0PuGYKe87nyvmCqBlExmVeukmnTik_J5di76cPn1sfBrJvofNvazodtNMhSP2KRvpySiz_oMmz7Ll1nEqAwR63zROFIuT7E2PvabPpmbfudQTB7d2Z0Z5I7s3dnZMqwMRMT2y18_6v539A3_0BvMg</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Beckwith, Olivia</creator><creator>Grimm, Matthew</creator><creator>Soprunova, Jenya</creator><creator>Weaver, Bradley</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20121201</creationdate><title>Minkowski Length of 3D Lattice Polytopes</title><author>Beckwith, Olivia ; Grimm, Matthew ; Soprunova, Jenya ; Weaver, Bradley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-acf837ce3536ad221a19a84acafd1ccb06e2108b3b7ee927f04d256dcd504d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Factorization</topic><topic>Geometry</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polygons</topic><topic>Polytopes</topic><topic>Segments</topic><topic>Three dimensional</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckwith, Olivia</creatorcontrib><creatorcontrib>Grimm, Matthew</creatorcontrib><creatorcontrib>Soprunova, Jenya</creatorcontrib><creatorcontrib>Weaver, Bradley</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckwith, Olivia</au><au>Grimm, Matthew</au><au>Soprunova, Jenya</au><au>Weaver, Bradley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minkowski Length of 3D Lattice Polytopes</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>48</volume><issue>4</issue><spage>1137</spage><epage>1158</epage><pages>1137-1158</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>We study the Minkowski length L ( P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P , and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a polytime algorithm for computing L ( P ) where P is a 3D lattice polytope. We next study 3D lattice polytopes of Minkowski length 1. In particular, we show that if Q , a subpolytope of P , is the Minkowski sum of L = L ( P ) lattice polytopes Q i , each of Minkowski length 1, then the total number of interior lattice points of the polytopes Q 1 ,…, Q L is at most 4. Both results extend previously known results for lattice polygons. Our methods differ substantially from those used in the two-dimensional case.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00454-012-9433-5</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2012-12, Vol.48 (4), p.1137-1158
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_1283711994
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Combinatorics
Computational Mathematics and Numerical Analysis
Factorization
Geometry
Lattices
Mathematical analysis
Mathematics
Mathematics and Statistics
Polygons
Polytopes
Segments
Three dimensional
Vectors (mathematics)
title Minkowski Length of 3D Lattice Polytopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minkowski%20Length%20of%203D%20Lattice%20Polytopes&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Beckwith,%20Olivia&rft.date=2012-12-01&rft.volume=48&rft.issue=4&rft.spage=1137&rft.epage=1158&rft.pages=1137-1158&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-012-9433-5&rft_dat=%3Cproquest_cross%3E2823881231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1197161886&rft_id=info:pmid/&rfr_iscdi=true