Minkowski Length of 3D Lattice Polytopes
We study the Minkowski length L ( P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors i...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2012-12, Vol.48 (4), p.1137-1158 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Minkowski length
L
(
P
) of a lattice polytope
P
, which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in
P
. The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in
P
, and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a polytime algorithm for computing
L
(
P
) where
P
is a 3D lattice polytope.
We next study 3D lattice polytopes of Minkowski length 1. In particular, we show that if
Q
, a subpolytope of
P
, is the Minkowski sum of
L
=
L
(
P
) lattice polytopes
Q
i
, each of Minkowski length 1, then the total number of interior lattice points of the polytopes
Q
1
,…,
Q
L
is at most 4. Both results extend previously known results for lattice polygons. Our methods differ substantially from those used in the two-dimensional case. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-012-9433-5 |