Minkowski Length of 3D Lattice Polytopes

We study the Minkowski length L ( P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2012-12, Vol.48 (4), p.1137-1158
Hauptverfasser: Beckwith, Olivia, Grimm, Matthew, Soprunova, Jenya, Weaver, Bradley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Minkowski length L ( P ) of a lattice polytope P , which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P . The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P , and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a polytime algorithm for computing L ( P ) where P is a 3D lattice polytope. We next study 3D lattice polytopes of Minkowski length 1. In particular, we show that if Q , a subpolytope of P , is the Minkowski sum of L = L ( P ) lattice polytopes Q i , each of Minkowski length 1, then the total number of interior lattice points of the polytopes Q 1 ,…, Q L is at most 4. Both results extend previously known results for lattice polygons. Our methods differ substantially from those used in the two-dimensional case.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-012-9433-5