Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
Two-variable functions f ( x , y ) from the class L 2 = L 2 (( a , b ) × ( c , d ); p ( x ) q ( y )) with the weight p ( x ) q ( y ) and the norm are approximated by an orthonormal system of orthogonal P n ( x ) Q n ( y ), n , m = 0, 1, ..., with weights p ( x ) and q ( y ). Let denote the best appr...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2012-11, Vol.52 (11), p.1497-1503 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-variable functions
f
(
x
,
y
) from the class
L
2
=
L
2
((
a
,
b
) × (
c
,
d
);
p
(
x
)
q
(
y
)) with the weight
p
(
x
)
q
(
y
) and the norm
are approximated by an orthonormal system of orthogonal
P
n
(
x
)
Q
n
(
y
),
n
,
m
= 0, 1, ..., with weights
p
(
x
) and
q
(
y
). Let
denote the best approximation of
f
∈
L
2
by algebraic polynomials of the form
. Consider a double Fourier series of
f
∈
L
2
in the polynomials
P
n
(
x
)
Q
m
(
y
),
n
,
m
= 0, 1, ..., and its “hyperbolic” partial sums
A generalized shift operator
Fh
and a
k
th-order generalized modulus of continuity Ω
k
(
A
,
h
) of a function
f
∈
L
2
are used to prove the following sharp estimate for the convergence rate of the approximation:
. Moreover, for every fixed
N
= 4, 9, 16, ..., the constant on the right-hand side of this inequality is cannot be reduced. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542512110024 |