Note on the Longest Paths in {K1,4, K1,4+e}-free Graphs

A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2012-12, Vol.28 (12), p.2501-2506
Hauptverfasser: Duan, Fang, Wang, Guo Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2506
container_issue 12
container_start_page 2501
container_title Acta mathematica Sinica. English series
container_volume 28
creator Duan, Fang
Wang, Guo Ping
description A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices.
doi_str_mv 10.1007/s10114-012-0459-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283707442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43987852</cqvip_id><sourcerecordid>2815131681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-52564e61ea79c37ed9c6d65563e4968654f43c0c6fb67aaed35ce58cf04d8a573</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhS0EEqVwAHZGbFg04In_kiVCUBAVsIC1ZZwJadUmrZ0uEOIEXIk7cQUcpUKIBZuZWbw38_QNIYfAToExfRaAAYiEQZowIfNEb5EBCB4HBXp7M2cS1C7ZC2HGmJQ5UwOS3zUt0qambYV00tQvGFr6YNsq0GlN325hJEa0q1-fH_ielB6Rjr1dVmGf7JR2HvBg04fk6ery8eI6mdyPby7OJ4njirWJTKUSqACtzh3XWOROFUpKxVHkKlNSlII75lT5rLS1WHDpUGauZKLIrNR8SE76vUvfrNYxnllMg8P53NbYrIOBNOOaaSHSKD3-I501a1_HdAZAgs41AI8q6FXONyF4LM3STxfWvxpgpoNpepgmwjQdTNOFSHtPiNoIyf_a_I_paHOoimBX0fdzKX4j05lM-Te3B39A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151797113</pqid></control><display><type>article</type><title>Note on the Longest Paths in {K1,4, K1,4+e}-free Graphs</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Duan, Fang ; Wang, Guo Ping</creator><creatorcontrib>Duan, Fang ; Wang, Guo Ping</creatorcontrib><description>A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-012-0459-7</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>free图 ; Graph theory ; Graphs ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Studies ; 哈密尔顿 ; 图同构 ; 最长路径 ; 顶点</subject><ispartof>Acta mathematica Sinica. English series, 2012-12, Vol.28 (12), p.2501-2506</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-52564e61ea79c37ed9c6d65563e4968654f43c0c6fb67aaed35ce58cf04d8a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-012-0459-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-012-0459-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duan, Fang</creatorcontrib><creatorcontrib>Wang, Guo Ping</creatorcontrib><title>Note on the Longest Paths in {K1,4, K1,4+e}-free Graphs</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices.</description><subject>free图</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Studies</subject><subject>哈密尔顿</subject><subject>图同构</subject><subject>最长路径</subject><subject>顶点</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1OwzAQhS0EEqVwAHZGbFg04In_kiVCUBAVsIC1ZZwJadUmrZ0uEOIEXIk7cQUcpUKIBZuZWbw38_QNIYfAToExfRaAAYiEQZowIfNEb5EBCB4HBXp7M2cS1C7ZC2HGmJQ5UwOS3zUt0qambYV00tQvGFr6YNsq0GlN325hJEa0q1-fH_ielB6Rjr1dVmGf7JR2HvBg04fk6ery8eI6mdyPby7OJ4njirWJTKUSqACtzh3XWOROFUpKxVHkKlNSlII75lT5rLS1WHDpUGauZKLIrNR8SE76vUvfrNYxnllMg8P53NbYrIOBNOOaaSHSKD3-I501a1_HdAZAgs41AI8q6FXONyF4LM3STxfWvxpgpoNpepgmwjQdTNOFSHtPiNoIyf_a_I_paHOoimBX0fdzKX4j05lM-Te3B39A</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Duan, Fang</creator><creator>Wang, Guo Ping</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20121201</creationdate><title>Note on the Longest Paths in {K1,4, K1,4+e}-free Graphs</title><author>Duan, Fang ; Wang, Guo Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-52564e61ea79c37ed9c6d65563e4968654f43c0c6fb67aaed35ce58cf04d8a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>free图</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Studies</topic><topic>哈密尔顿</topic><topic>图同构</topic><topic>最长路径</topic><topic>顶点</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Fang</creatorcontrib><creatorcontrib>Wang, Guo Ping</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Fang</au><au>Wang, Guo Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note on the Longest Paths in {K1,4, K1,4+e}-free Graphs</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>28</volume><issue>12</issue><spage>2501</spage><epage>2506</epage><pages>2501-2506</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-012-0459-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2012-12, Vol.28 (12), p.2501-2506
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_miscellaneous_1283707442
source SpringerLink Journals; Alma/SFX Local Collection
subjects free图
Graph theory
Graphs
Mathematical analysis
Mathematics
Mathematics and Statistics
Studies
哈密尔顿
图同构
最长路径
顶点
title Note on the Longest Paths in {K1,4, K1,4+e}-free Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note%20on%20the%20Longest%20Paths%20in%20%7BK1,4,%20K1,4%EF%BC%8Be%7D-free%20Graphs&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Duan,%20Fang&rft.date=2012-12-01&rft.volume=28&rft.issue=12&rft.spage=2501&rft.epage=2506&rft.pages=2501-2506&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-012-0459-7&rft_dat=%3Cproquest_cross%3E2815131681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151797113&rft_id=info:pmid/&rft_cqvip_id=43987852&rfr_iscdi=true