Note on the Longest Paths in {K1,4, K1,4+e}-free Graphs
A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices.
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2012-12, Vol.28 (12), p.2501-2506 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-012-0459-7 |