Note on the Longest Paths in {K1,4, K1,4+e}-free Graphs

A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2012-12, Vol.28 (12), p.2501-2506
Hauptverfasser: Duan, Fang, Wang, Guo Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph G is {K1,4, K1,4 + e}-free if G contains no induced subgraph isomorphic to K1,4 or KI,a + e In this paper, we show that G has a path which is either hamiltonian or of length at least 25(G) + 2 if G is a connected {K1,4, K1,4 + e}-free graph on at least 7 vertices.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-012-0459-7