Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering

TaN thin film is an attractive interlayer as well as a diffusion barrier layer in [FeN/TaN]n multilayers for the application as potential write-head materials in high-density magnetic recording. We synthesized two series of TaN films on glass and Si substrates by using reactive radio-frequency sputt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2001-08, Vol.73 (2), p.229-236
Hauptverfasser: NIE, H. B, XU, S. Y, WANG, S. J, YOU, L. P, YANG, Z, ONG, C. K, LI, J, LIEW, T. Y. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TaN thin film is an attractive interlayer as well as a diffusion barrier layer in [FeN/TaN]n multilayers for the application as potential write-head materials in high-density magnetic recording. We synthesized two series of TaN films on glass and Si substrates by using reactive radio-frequency sputtering under 5-mtorr Ar/N2 processing pressure with varied N2 partial pressure, and carried out systematic characterization analyses of the films. We observed clear changes of phases in the films from metallic bcc Ta to a mixture of bcc Ta(N) and hexagonal Ta2N, then sequentially to fcc TaN and a mixture of TaN with N-rich phases when the N2 partial pressure increased from 0.0% to 30%. The changes were associated with changes in the grain shapes as well as in the preferred crystalline orientation of the films from bcc Ta [100] to [110], then to random and finally to fcc TaN [111], correspondingly. They were also associated with a change in film resistivity from metallic to semiconductor-like behavior in the range of 77--295 K. The films showed a typical polycrystalline textured structure with small, crystallized domains and irregular grain shapes. Clear preferred (111) stacks parallel to the substrate surface with embedded amorphous regions were observed in the film. TaN film with [111]-preferred orientation and a resistivity of 6.0 m*Wcm was obtained at 25% N2 partial pressure, which may be suitable for the interlayer in [FeN/TaN]n multilayers.
ISSN:0947-8396
1432-0630
DOI:10.1007/s003390000691