Transport and dynamics of optically excited electrons in metals
Time-resolved two-photon photoemission, based on the equal-pulse correlation technique, is used to measure the energy relaxation and the transport of the photoexcited carriers in thin Ag and Au films. The energy-dependent relaxation time shows a significant thickness dependence in the Ag film, where...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2000-11, Vol.71 (5), p.485-491 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-resolved two-photon photoemission, based on the equal-pulse correlation technique, is used to measure the energy relaxation and the transport of the photoexcited carriers in thin Ag and Au films. The energy-dependent relaxation time shows a significant thickness dependence in the Ag film, whereas for Au a much smaller effect is observed. These experimental observations are compared with a theoretical model based on the Boltzmann equation, which includes secondary (Auger) electrons and transport. A good agreement between experimental and theoretical results is found for Au. However, in our calculations, we did not find any significant change in the thickness dependence in the case of Ag. In order to explain the strong effect in Ag, we discuss the possibility of surface excitations. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s003390000704 |