Time-resolved photoemission electron microscopy of magnetic field and magnetisation changes
Owing to its parallel image acquisition, photoemission electron microscopy is well suited for real-time observation of fast processes on surfaces. Pulsed excitation sources like synchrotron radiation or lasers, fast electric pulsers for the study of magnetic switching, and/or time-resolved detection...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2003-04, Vol.76 (6), p.863-868 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Owing to its parallel image acquisition, photoemission electron microscopy is well suited for real-time observation of fast processes on surfaces. Pulsed excitation sources like synchrotron radiation or lasers, fast electric pulsers for the study of magnetic switching, and/or time-resolved detection can be utilised. A standard approach also being used in light optical imaging is stroboscopic illumination of a periodic (or quasi-periodic) process. Using this technique, the time dependence of the magnetic field in a pulsed microstrip line has been imaged in real time exploiting Lorentz-type contrast. Similarly, the corresponding field-induced changes in the magnetisation of cobalt microstructures deposited on the microstrip line have been observed exploiting magnetic X-ray circular dichroism as a contrast mechanism. The experiment has been performed at the UE 56/1-PGM at BESSY II (Berlin) in the single-bunch mode. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-002-1965-8 |