Map building without localization by estimation of inter-feature distances
This paper proposes an alternative solution to a mapping problem in two different cases; when bearing measurements to features (landmarks) and odometry are measured and when bearing and range measurements to features are measured. Our approach named M-SEIFD (Mapping by Sequential Estimation of Inter...
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2010-01, Vol.14 (4), p.515-529 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an alternative solution to a mapping problem in two different cases; when bearing measurements to features (landmarks) and odometry are measured and when bearing and range measurements to features are measured. Our approach named M-SEIFD (Mapping by Sequential Estimation of Inter-Feature Distances) first estimates inter-feature distances, then finds global position of all the features by enhanced multi-dimensional scaling (MDS). M-SEIFD is different from the conventional SLAM methods based on Bayesian filtering in that robot self-localization is not compulsory and that M-SEIFD is able to utilize prior information about relative distances among features directly. We show that M-SEIFD is able to achieve a decent map of features both in simulation and in real-world environment with a mobile robot. |
---|---|
ISSN: | 1088-467X 1571-4128 |
DOI: | 10.3233/IDA-2010-0435 |