Adaptive mixture methods based on Bregman divergences

We investigate adaptive mixture methods that linearly combine outputs of m constituent filters running in parallel to model a desired signal. We use Bregman divergences and obtain certain multiplicative updates to train the linear combination weights under an affine constraint or without any constra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing 2013-01, Vol.23 (1), p.86-97
Hauptverfasser: Donmez, Mehmet A., Inan, Huseyin A., Kozat, Suleyman S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate adaptive mixture methods that linearly combine outputs of m constituent filters running in parallel to model a desired signal. We use Bregman divergences and obtain certain multiplicative updates to train the linear combination weights under an affine constraint or without any constraints. We use unnormalized relative entropy and relative entropy to define two different Bregman divergences that produce an unnormalized exponentiated gradient update and a normalized exponentiated gradient update on the mixture weights, respectively. We then carry out the mean and the mean-square transient analysis of these adaptive algorithms when they are used to combine outputs of m constituent filters. We illustrate the accuracy of our results and demonstrate the effectiveness of these updates for sparse mixture systems.
ISSN:1051-2004
1095-4333
DOI:10.1016/j.dsp.2012.09.006