Induced subgraphs of hypercubes

Let Qk denote the k-dimensional hypercube on 2k vertices. A vertex in a subgraph of Qk is full if its degree is k. We apply the Kruskal–Katona Theorem to compute the maximum number of full vertices an induced subgraph on n≤2k vertices of Qk can have, as a function of k and n. This is then used to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2013-02, Vol.34 (2), p.155-168
1. Verfasser: Agnarsson, Geir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Qk denote the k-dimensional hypercube on 2k vertices. A vertex in a subgraph of Qk is full if its degree is k. We apply the Kruskal–Katona Theorem to compute the maximum number of full vertices an induced subgraph on n≤2k vertices of Qk can have, as a function of k and n. This is then used to determine min(max(|V(H1)|,|V(H2)|)) where (i) H1 and H2 are induced subgraphs of Qk, and (ii) together they cover all the edges of Qk, that is E(H1)∪E(H2)=E(Qk).
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2012.09.004