Induced subgraphs of hypercubes
Let Qk denote the k-dimensional hypercube on 2k vertices. A vertex in a subgraph of Qk is full if its degree is k. We apply the Kruskal–Katona Theorem to compute the maximum number of full vertices an induced subgraph on n≤2k vertices of Qk can have, as a function of k and n. This is then used to de...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2013-02, Vol.34 (2), p.155-168 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Qk denote the k-dimensional hypercube on 2k vertices. A vertex in a subgraph of Qk is full if its degree is k. We apply the Kruskal–Katona Theorem to compute the maximum number of full vertices an induced subgraph on n≤2k vertices of Qk can have, as a function of k and n. This is then used to determine min(max(|V(H1)|,|V(H2)|)) where (i) H1 and H2 are induced subgraphs of Qk, and (ii) together they cover all the edges of Qk, that is E(H1)∪E(H2)=E(Qk). |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2012.09.004 |