A pair of characteristic subgroups for pushing-up. II

Many problems about local analysis in a finite group G reduce to a special case in which G has a large normal p-subgroup satisfying several restrictions. In 1983, R. Niles and G. Glauberman showed that every finite p-group S of nilpotence class at least 4 must have two characteristic subgroups S1 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2013-02, Vol.56 (1), p.71-133
1. Verfasser: Glauberman, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many problems about local analysis in a finite group G reduce to a special case in which G has a large normal p-subgroup satisfying several restrictions. In 1983, R. Niles and G. Glauberman showed that every finite p-group S of nilpotence class at least 4 must have two characteristic subgroups S1 and S2 such that, whenever S is a Sylow p-subgroup of a group G as above, S1 or S2 is normal in G. In this paper, we prove a similar theorem with a more explicit choice of S1 and S2.
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091512000089