Modeling and Optimizing the Performance-Security Tradeoff on D-NCS Using the Coevolutionary Paradigm
Distributed networked control systems (D-NCS) are vulnerable to various network attacks when the network is not secured; thus, D-NCS must be well protected with security mechanisms (e.g., cryptography), which may adversely affect the dynamic performance of the D-NCS because of limited system resourc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2013-02, Vol.9 (1), p.394-402 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Distributed networked control systems (D-NCS) are vulnerable to various network attacks when the network is not secured; thus, D-NCS must be well protected with security mechanisms (e.g., cryptography), which may adversely affect the dynamic performance of the D-NCS because of limited system resources. This paper addresses the tradeoff between D-NCS security and its real-time performance and uses the Intelligent Space (iSpace) for illustration. A tradeoff model for a system's dynamic performance and its security is presented. This model can be used to allocate system resources to provide sufficient protection and to satisfy the D-NCS's real-time dynamic performance requirements simultaneously. Then, the paper proposes a paradigm of the performance-security tradeoff optimization based on the coevolutionary genetic algorithm (CGA) for D-NCS. A Simulink-based test-bed is implemented to illustrate the effectiveness of this paradigm. The results of the simulation show that the CGA can efficiently find the optimal values in a performance-security tradeoff model for D-NCS. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2012.2209662 |