A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-γ-butyrolactone
The replacement of petroleum feedstocks with biomass to produce platform chemicals requires the development of appropriate conversion technologies. 3-Hydroxy-γ-butyrolactone has been identified as one such chemical; however, there are no naturally occurring biosynthetic pathways for this molecule or...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013-01, Vol.4 (1), p.1414-1414, Article 1414 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The replacement of petroleum feedstocks with biomass to produce platform chemicals requires the development of appropriate conversion technologies. 3-Hydroxy-γ-butyrolactone has been identified as one such chemical; however, there are no naturally occurring biosynthetic pathways for this molecule or its hydrolyzed form, 3,4-dihydroxybutyric acid. Here we design a novel pathway to produce various chiral 3-hydroxyacids, including 3,4-dihydroxybutyric acid, consisting of enzymes that condense two acyl-CoAs, stereospecifically reduce the resulting β-ketone and hydrolyze the CoA thioester to release the free acid. Acetyl-CoA serves as one substrate for the condensation reaction, whereas the second is produced intracellularly by a pathway enzyme that converts exogenously supplied organic acids. Feeding of butyrate, isobutyrate and glycolate results in the production of 3-hydroxyhexanoate, 3-hydroxy-4-methylvalerate and 3,4-dihydroxybutyric acid+3-hydroxy-γ-butyrolactone, respectively, molecules with potential uses in applications from materials to medicines. We also unexpectedly observe the condensation reaction resulting in the production of the 2,3-dihydroxybutyric acid isomer, a potential value-added monomer.
3-hydroxy-γ-butyrolactone (3HBL) is a building block for many valuable drugs and is synthesized via a costly industrial process. Martin
et al.
engineer a novel biosynthetic pathway for the inexpensive production of 3HBL and other 3-hydroxyacids in
E. coli
. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms2418 |