Matrix metalloproteinase inhibition protects CyPD knockout mice independently of RISK/mPTP signalling: a parallel pathway to protection
The mitochondrial permeability transition pore (mPTP) is widely accepted as an end-effector mechanism of conditioning protection against injurious ischaemia/reperfusion. However, death can be initiated in cells without pre-requisite mPTP opening, implicating alternate targets for ischaemia/reperfusi...
Gespeichert in:
Veröffentlicht in: | Basic research in cardiology 2013-03, Vol.108 (2), p.331-331, Article 331 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mitochondrial permeability transition pore (mPTP) is widely accepted as an end-effector mechanism of conditioning protection against injurious ischaemia/reperfusion. However, death can be initiated in cells without pre-requisite mPTP opening, implicating alternate targets for ischaemia/reperfusion injury amelioration. Matrix metalloproteinases (MMP) are known to activate extrinsic apoptotic cascades and therefore we hypothesised that MMP activity represents an mPTP-independent target for augmented attenuation of ischaemia/reperfusion injury. In ex vivo and in vivo mouse hearts, we investigated whether the MMP inhibitor, ilomastat (0.25 μmol/l), administered upon reperfusion could engender protection in the absence of cyclophilin-D (CyPD), a modulator of mPTP opening, against injurious ischaemia/reperfusion. Ilomastat attenuated infarct size in wild-type (WT) animals [37 ± 2.8 to 22 ± 4.3 %, equivalent to ischaemic postconditioning (iPostC), used as positive control, 27 ± 2.1 %,
p
|
---|---|
ISSN: | 0300-8428 1435-1803 |
DOI: | 10.1007/s00395-013-0331-7 |