Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future

The importance of the eukaryotic algal CO 2 -concentrating mechanism (CCM) is considered in terms of global productivity as well as molecular phylogeny and diversity. The three major constituents comprising the CCM in the majority of eukaryotes are described. These include: (i) likely plasma- and ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2013-01, Vol.64 (3), p.769-786
Hauptverfasser: Meyer, Moritz, Griffiths, Howard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The importance of the eukaryotic algal CO 2 -concentrating mechanism (CCM) is considered in terms of global productivity as well as molecular phylogeny and diversity. The three major constituents comprising the CCM in the majority of eukaryotes are described. These include: (i) likely plasma- and chloroplast-membrane inorganic carbon transporters; (ii) a suite of carbonic anhydrase enzymes in strategic locations; and usually (iii) a microcompartment in which most Rubisco aggregates (the chloroplast pyrenoid). The molecular diversity of known CCM components are stt against the current green algal model for their probable operation. The review then focuses on the kinetic and cystallographic interactions of Rubisco, which permit pyrenoid formation and CCM function. Firstly, we consider observations that surface residues of the Rubisco small subunit directly condition Rubisco aggregation and pyrenoid formation. Secondly, we reanalyse the phylogenetic progression in green Rubisco kinetic properties, and suggest that Rubisco substrate selectivity (the specificity factor, Srel, and affinity for CO 2 , kc) demonstrate a systematic relaxation, which directly relates to the origins and effectiveness of a CCM. Finally, we consider the implications of eukaryotic CCM regulation and minimum components needed for introduction into higher plants as a possible means to enhance crop productivity in the future.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/ers390