Protein restriction in early life is associated with changes in insulin sensitivity and pancreatic β-cell function during pregnancy
Malnutrition in early life impairs glucose-stimulated insulin secretion in adulthood. Conversely, pregnancy is associated with a significant increase in glucose-stimulated insulin secretion under conditions of normoglycaemia. A failure in β-cell adaptive changes may contribute to the onset of diabet...
Gespeichert in:
Veröffentlicht in: | British journal of nutrition 2013-01, Vol.109 (2), p.236-247 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Malnutrition in early life impairs glucose-stimulated insulin secretion in adulthood. Conversely, pregnancy is associated with a significant increase in glucose-stimulated insulin secretion under conditions of normoglycaemia. A failure in β-cell adaptive changes may contribute to the onset of diabetes. Thus, glucose homeostasis and β-cell function were evaluated in control-fed pregnant (CP) and non-pregnant (CNP) or protein-restricted pregnant (LPP) and non-pregnant (LPNP) rats, from fetal to adult life, and in protein-restricted rats that were recovered after weaning (RP and RNP). The typical insulin resistance of pregnancy was not observed in the RP rats, nor did pregnancy increase the insulin content/islet in the LPP group. The glucose dose-response curves from pregnant rats were shifted to the left in relation to the non-pregnant rats, except in the recovered group. Glucose utilisation but not oxidation in islets from the RP and LPP groups was reduced at a concentration of 8.3 mm-glucose compared with islets from the CP group. Cyclic AMP content and the potentiation of glucose-stimulated insulin secretion by isobutylmethylxanthine at a concentration of 2.8 mm-glucose indicated increased adenylyl cyclase 3 activity but reduced protein kinase A-α activity in islets from the RP and LPP rats. Protein kinase C (PKC)-α but not phospholipase C (PLC)-β1 expression was reduced in islets from the RP group. Phorbol-12-myristate 13-acetate produced a less potent stimulation of glucose-stimulated insulin secretion in the RP group. Thus, the alterations exhibited by islets from the LPP group appeared to be due to reduced islet mass and/or insulin biosynthesis. In the RP group the loss of the adaptive capacity apparently resulted from uncoupling between glucose metabolism and the amplifying signals of the secretory process, as well as a severe attenuation of the PLC/PKC pathway. |
---|---|
ISSN: | 0007-1145 1475-2662 |
DOI: | 10.1017/S000711451200089X |