Differentiating Diffuse World Health Organization Grade II and IV Astrocytomas With Ex Vivo Magnetic Resonance Spectroscopy
Abstract BACKGROUND: The prognosis and treatment of astrocytomas, which are primary brain tumors, vary depending on the grade of the tumor, necessitating a precise preoperative classification. Magnetic resonance spectroscopy (MRS) provides information about metabolites in tissues and is an emerging...
Gespeichert in:
Veröffentlicht in: | Neurosurgery 2013-02, Vol.72 (2), p.186-195 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
BACKGROUND:
The prognosis and treatment of astrocytomas, which are primary brain tumors, vary depending on the grade of the tumor, necessitating a precise preoperative classification. Magnetic resonance spectroscopy (MRS) provides information about metabolites in tissues and is an emerging noninvasive tool to improve diagnostic accuracy in patients with intracranial neoplasia.
OBJECTIVE:
To investigate whether ex vivo MRS could differentiate World Health Organization grade II (A-II) and IV astrocytomas (glioblastomas; GBM) and to correlate MR spectral profiles with clinical parameters.
METHODS:
Patients with A-II and GBM (n = 58) scheduled for surgical resection were enrolled. Tumor specimens were collected during surgery and stored in liquid nitrogen before being analyzed with high-resolution magic angle spinning MRS. The tumors were histopathologically classified according to World Health Organization criteria as GBM (n = 48) and A-II (n = 10).
RESULTS:
Multivariate analysis of ex vivo proton high-resolution magic angle spinning spectra MRS showed differences in the metabolic profiles of different grades of astrocytomas. A-II had higher levels of glycerophosphocholine and myo-inositol than GBM. The latter had more phosphocholine, glycine, and lipids. We observed a significant metabolic difference between recurrent and nonrecurrent GBM (P < .001). Primary GBM had more phosphocholine than recurrent GBM. A significant correlation (P < .001) between lipid and lactate signals and histologically estimated percentage of necrosis was observed in GBM. Spectral profiles were not correlated with age, survival, or magnetic resonance imaging-defined tumor volume.
CONCLUSION:
Ex vivo MRS can differentiate astrocytomas based on their metabolic profiles. |
---|---|
ISSN: | 0148-396X 1524-4040 |
DOI: | 10.1227/NEU.0b013e31827b9c57 |