Epigenetics and Cardiovascular Disease

Abstract A commonly-assumed paradigm holds that the primary genetic determinant of cardiovascular disease resides within the DNA sequence of our genes. This paradigm can be challenged. For example, how do sequence changes in the non-coding region of the genome influence phenotype? Why are all diseas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of cardiology 2013, Vol.29 (1), p.46-57
Hauptverfasser: Webster, Andrew L.H, Yan, Matthew Shu-Ching, BSc (Hon), Marsden, Philip A., MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract A commonly-assumed paradigm holds that the primary genetic determinant of cardiovascular disease resides within the DNA sequence of our genes. This paradigm can be challenged. For example, how do sequence changes in the non-coding region of the genome influence phenotype? Why are all diseases not shared between identical twins? Part of the answer lies in the fact that the environment or exogenous stimuli clearly influence disease susceptibility, but it was unclear in the past how these effects were signalled to the static DNA code. Epigenetics is providing a newer perspective on these issues. Epigenetics refers to chromatin-based mechanisms important in the regulation of gene expression that do not involve changes to the DNA sequence per se. The field can be broadly categorized into three areas: DNA base modifications (including cytosine methylation and cytosine hydroxymethylation), post-translational modifications of histone proteins, and RNA-based mechanisms that operate in the nucleus. Cardiovascular disease pathways are now being approached from the epigenetic perspective, including those associated with atherosclerosis, angiogenesis, ischemia-reperfusion damage, and the cardiovascular response to hypoxia and shear stress, among many others. With increasing interest and expanding partnerships in the field, we can expect new insights to emerge from epigenetic perspectives of cardiovascular health. This paper reviews the principles governing epigenetic regulation, discusses their presently-understood importance in cardiovascular disease, and considers the growing significance we are likely to attribute to epigenetic contributions in the future, as they provide new mechanistic insights and a host of novel clinical applications.
ISSN:0828-282X
1916-7075
DOI:10.1016/j.cjca.2012.10.023