Surface Display of a Redox Enzyme and its Site-Specific Wiring to Gold Electrodes

The generation of a current through interaction between bacteria and electrodes has been explored by various methods. We demonstrate the attachment of living bacteria through a surface displayed redox enzyme, alcohol dehydrogenase II. The unnatural amino acid para-azido-l-phenylalanine was incorpora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-01, Vol.135 (1), p.70-73
Hauptverfasser: Amir, Liron, Carnally, Stewart A, Rayo, Josep, Rosenne, Shaked, Melamed Yerushalmi, Sarit, Schlesinger, Orr, Meijler, Michael M, Alfonta, Lital
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generation of a current through interaction between bacteria and electrodes has been explored by various methods. We demonstrate the attachment of living bacteria through a surface displayed redox enzyme, alcohol dehydrogenase II. The unnatural amino acid para-azido-l-phenylalanine was incorporated into a specific site of the displayed enzyme, facilitating electron transfer between the enzyme and an electrode. In order to attach the bacteria carrying the surface displayed enzyme to a surface, a linker containing an alkyne and a thiol moiety on opposite ends was synthesized and attached to the dehydrogenase site specifically through a copper(I)-catalyzed azide–alkyne cycloaddition reaction. Using this approach we were able to covalently link bacteria to gold-coated surfaces and to gold nanoparticles, while maintaining viability and catalytic activity. We show the performance of a biofuel cell using these modified bacteria at the anode, which resulted in site-specific dependent fuel cell performance for at least a week. This is the first example of site-specific attachment of a true living biohybrid to inorganic material.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja310556n