Rhodium(III)-Catalyzed N‑Nitroso-Directed C–H Olefination of Arenes. High-Yield, Versatile Coupling under Mild Conditions
N-Nitroso compounds are a versatile class of organic structures that allow expedient access to a diversity of synthetically useful architectures through demonstrated reactivities. We report herein the development of a Rh(III)-catalyzed N-nitroso-directed methodology for the ortho-olefination of aren...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2013-01, Vol.135 (1), p.468-473 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | N-Nitroso compounds are a versatile class of organic structures that allow expedient access to a diversity of synthetically useful architectures through demonstrated reactivities. We report herein the development of a Rh(III)-catalyzed N-nitroso-directed methodology for the ortho-olefination of arenes. The heightened reactivity endowed by the N-nitroso group translates to mild reaction conditions, high reaction yields, and synthetic compatibility of otherwise elusive substrates (e.g., an unactivated olefin, 1-octene). Comprehensive mechanistic studies on the electronic effect, deuterium exchange, kinetic isotope effect, kinetic profile, and numerous Rh(III) complexes have established [RhCp*]2+ as the catalyst resting state, electrophilic C–H activation as the turnover-limiting step, and a five-membered rhodacycle as a catalytically competent intermediate. The ability to elaborate the N-nitroso moiety to an amine functionality provides a seminal example of the innumerable synthetic possibilities offered by this transformable directing group. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja3099245 |