Antioxidant β‑Carotene Does Not Quench Singlet Oxygen in Mammalian Cells
Carotenoids, and β-carotene in particular, are important natural antioxidants. Singlet oxygen, the lowest excited state of molecular oxygen, is an intermediate often involved in natural oxidation reactions. The fact that β-carotene efficiently quenches singlet oxygen in solution-phase systems is inv...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2013-01, Vol.135 (1), p.272-279 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carotenoids, and β-carotene in particular, are important natural antioxidants. Singlet oxygen, the lowest excited state of molecular oxygen, is an intermediate often involved in natural oxidation reactions. The fact that β-carotene efficiently quenches singlet oxygen in solution-phase systems is invariably invoked when explaining the biological antioxidative properties of β-carotene. We recently developed unique microscope-based time-resolved spectroscopic methods that allow us to directly examine singlet oxygen in mammalian cells. We now demonstrate that intracellular singlet oxygen, produced in a photosensitized process, is in fact not efficiently deactivated by β-carotene. This observation requires a re-evaluation of β-carotene’s role as an antioxidant in mammalian systems and now underscores the importance of mechanisms by which β-carotene inhibits radical reactions. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja308930a |