Betaine attenuates Alzheimer‐like pathological changes and memory deficits induced by homocysteine

Hyperhomocysteinemia (Hhcy) may induce memory deficits with β‐amyloid (Aβ) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aβ accumulation and memory impairments ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2013-02, Vol.124 (3), p.388-396
Hauptverfasser: Chai, Gao‐Shang, Jiang, Xia, Ni, Zhong‐Fei, Ma, Zhi‐Wei, Xie, Ao‐Ji, Cheng, Xiang‐Shu, Wang, Qun, Wang, Jian‐Zhi, Liu, Gong‐Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperhomocysteinemia (Hhcy) may induce memory deficits with β‐amyloid (Aβ) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aβ accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer‐like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2‐week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy‐induced memory deficits, enhance long‐term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up‐regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy‐induced tau hyperphosphorylation at multiple AD‐related sites through activation protein phosphatase‐2A (PP2A) with decreased inhibitory demethylated PP2AC at Leu309 and phosphorylated PP2AC at Tyr307. In addition, supplementation of betaine also decreased Aβ production with decreased presenilin‐1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy‐induced AD‐like pathological changes and memory deficits. We have found that betaine can attenuate Hcy‐induced spatial memory deficits with possible mechanisms that may involve in the expresions or/and activations of several memory‐related proteins, and increase the dendritic branches and spine density in hippocampal CA1 region. It also attenuated AD‐like tau hyperphosphorylation by activation PP2A, and inhibited Aβ aggregation by decreasing PS‐1.
ISSN:0022-3042
1471-4159
DOI:10.1111/jnc.12094