Exon 47 skipping of fibrillin-1 leads preferentially to cardiovascular defects in patients with thoracic aortic aneurysms and dissections
Excessive activation of the transforming growth factor beta signaling pathway and disorganized cellular skeleton caused by genetic mutations are known to be responsible for the inherited thoracic aortic aneurysms and dissections (TAAD), a life-threatening vascular disease. To investigate the genotyp...
Gespeichert in:
Veröffentlicht in: | Journal of molecular medicine (Berlin, Germany) Germany), 2013, Vol.91 (1), p.37-47 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excessive activation of the transforming growth factor beta signaling pathway and disorganized cellular skeleton caused by genetic mutations are known to be responsible for the inherited thoracic aortic aneurysms and dissections (TAAD), a life-threatening vascular disease. To investigate the genotype–phenotype correlation, we screened genetic mutations of
fibrillin-1
(
FBN1
),
transforming growth factor-β receptor-1
(
TGFBR1
) and
transforming growth factor-β receptor-2
(
TGFBR2
) for TAAD in 7 affected families and 22 sporadic patients. Of 19 potential mutations identified in
FBN1
, 11 appeared novel while the others were recurrent. Two mutations were detected in
TGFBR2
. Eight patients carried no mutation in either of these genes. Characterization of
FBN1
c.5917+6T>C in transfected HEK293 cells demonstrated that it caused skipping of exon 47, leading to the loss of the 33th calcium binding epidermal growth factor-like domain associated with Marfan syndrome. Compared with exon 46, skipping of 47 did not cause patients ectopia lentis in all carriers. To correlate genotypes with phenotypes in different human ancestries, we reviewed the published mutational studies on
FBN1
and found that the probability of cardiovascular defects were significantly increased in Chinese patients with premature termination codon or splicing mutations than those with missense mutations (91.7 % vs 54.2 %,
P
= 0.0307) or with noncysteine-involved point mutations than those with cysteine-involved mutations (88.9 % vs 33.3 %,
P
= 0.0131). Thus, we conclude that exon 47 skipping of
FBN1
leads preferentially to cardiovascular defects and human ancestries influence genotype–phenotype correlation in TAAD. |
---|---|
ISSN: | 0946-2716 1432-1440 |
DOI: | 10.1007/s00109-012-0931-y |