An anti-inflammatory role for leukemia inhibitory factor receptor signaling in regenerating skeletal muscle
Skeletal muscle regeneration in pathology and following injury requires the coordinated actions of inflammatory cells and myogenic cells to remove damaged tissue and rebuild syncytial muscle cells, respectively. Following contusion injury to muscle, the cytokine leukemia inhibitor factor (LIF) is up...
Gespeichert in:
Veröffentlicht in: | Histochemistry and cell biology 2013, Vol.139 (1), p.13-34 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Skeletal muscle regeneration in pathology and following injury requires the coordinated actions of inflammatory cells and myogenic cells to remove damaged tissue and rebuild syncytial muscle cells, respectively. Following contusion injury to muscle, the cytokine leukemia inhibitor factor (LIF) is up-regulated and knockout of
Lif
negatively impacts on morphometric parameters of muscle regeneration. Although it was speculated that LIF regulates muscle regeneration through direct effects on myogenic cells, the inflammatory effects of LIF have not been examined in regenerating skeletal muscle. Therefore, the expression and function of LIF was examined using the antagonist MH35-BD during specific inflammatory and myogenic stages of notexin-induced muscle regeneration in mice. LIF protein and mRNA were up-regulated in two distinct phases following intramuscular injection of notexin into tibialis anterior muscles. The first phase of LIF up-regulation coincided with the increased expression of pro-inflammatory cytokines; the second phase coincided with myogenic differentiation and formation of new myotubes. Administration of the LIF receptor antagonist MH35-BD during the second phase of LIF up-regulation had no significant effects on transcript expression of genes required for myogenic differentiation or associated with inflammation; there were no significant differences in morphometric parameters of the regenerating muscle. Conversely, when MH35-BD was administered during the acute inflammatory phase, increased gene transcripts for the pro-inflammatory cytokines
Tnf
(Tumor necrosis factor),
Il1b
(Interleukin-1β) and
Il6
(Interleukin-6) alongside an increase in the number of Ly6G positive neutrophils infiltrating the muscle were observed. This was followed by a reduction in
Myog
(Myogenin) mRNA, which is required for myogenic differentiation, and the subsequent number of myotubes formed was significantly decreased in MH35-BD-treated groups compared to sham. Thus, antagonism of the LIF receptor during the inflammatory phase of skeletal muscle regeneration appeared to induce an inflammatory response that inhibited subsequent myotube formation. We propose that the predominant role of LIF in skeletal muscle regeneration appears to be in regulating the inflammatory response rather than directly effecting myogenic cells. |
---|---|
ISSN: | 0948-6143 1432-119X |
DOI: | 10.1007/s00418-012-1018-0 |