Field-to-laboratory transport protocol impacts subsequent physiological biomarker response in the marine mussel, Perna canaliculus

The transfer of mussels from field to laboratory, or transplantation between clean and contaminated field settings, is a common protocol in ecotoxicology. However, collection and transport of mussels could lead to stress that may impact biomarker responses, and thus confound interpretation of result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2013-01, Vol.164 (1), p.84-90
Hauptverfasser: Chandurvelan, Rathishri, Marsden, Islay D., Gaw, Sally, Glover, Chris N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transfer of mussels from field to laboratory, or transplantation between clean and contaminated field settings, is a common protocol in ecotoxicology. However, collection and transport of mussels could lead to stress that may impact biomarker responses, and thus confound interpretation of results. Physiological responses (clearance rate, absorption efficiency, excretion rate, respiration rate and scope-for-growth) of green-lipped mussels (Perna canaliculus) exposed to four different transportation protocols were investigated. These protocols included immersion in site seawater (SSW), immersion in artificial seawater (ASW), and emersion (aerial transport; EMS) at two temperatures (15°C and 5°C). Physiological measurements were conducted after a simulated 24h “transport” phase and a 48h “recovery” phase. Clearance rates were significantly inhibited by the EMS 5°C and ASW protocols relative to SSW treatment, although the clearance rate of the latter recovered after 48h. A similar pattern was observed for excretion and respiration rates for ASW. Decreased excretion rates for EMS 15°C and respiration rates for EMS 5°C were also recorded relative to values for SSW following “recovery”. Negative scope-for-growth was observed for all treatments except EMS 15°C. These data suggest transport emersed at ambient air temperatures is the best method to maintain physiological health of green-lipped mussels.
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2012.10.011