Evaluating Added Benefits of Assimilating GOES Imager Radiance Data in GSI for Coastal QPFs

The Geostationary Operational Environmental Satellites (GOES) provide high-resolution, temporally continuous imager radiance data over the West Coast (GOES-West currently known as GOES-11) and East Coast (GOES-East currently GOES-12) of the United States. Through a real case study, benefits of addin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2013, Vol.141 (1), p.75-92
Hauptverfasser: Qin, Zhengkun, Zou, Xiaolei, Weng, Fuzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Geostationary Operational Environmental Satellites (GOES) provide high-resolution, temporally continuous imager radiance data over the West Coast (GOES-West currently known as GOES-11) and East Coast (GOES-East currently GOES-12) of the United States. Through a real case study, benefits of adding GOES-11/12 imager radiances to the satellite data streams in NWP systems for improved coastal precipitation forecasts are examined. The Community Radiative Transfer Model (CRTM) is employed for GOES imager radiance simulations in the National Centers for Environmental Prediction (NCEP) gridpoint statistical interpolation (GSI) analysis system. The GOES imager radiances are added to conventional data for coastal quantitative precipitation forecast (QPF) experiments near the northern Gulf of Mexico and the derived precipitation threat score was compared with those from six other satellite instruments. It is found that the GOES imager radiance produced better precipitation forecasts than those from any other satellite instrument. However, when GOES imager radiance and six different types of satellite instruments are all assimilated, the score becomes much lower than the individual combination of GOES and any other instrument. Our analysis shows that an elimination of Advance Microwave Sounding Unit-B (AMSU-B)/Microwave Humidity Sounder (MHS) data over areas where GOES detects clouds significantly improved the forecast scores from AMSU-B/MHS data assimilation.
ISSN:0027-0644
1520-0493
DOI:10.1175/mwr-d-12-00079.1