A rapid flow cytometric method for distinguishing between febrile bacterial and viral infections
Antibiotic resistance due to the inappropriate use of antimicrobials is one of the most critical public health problems worldwide. A major factor underlying the unnecessary use of antibiotics is the lack of rapid and accurate diagnostic tests. Therefore, we aimed to develop a novel rapid flow cytome...
Gespeichert in:
Veröffentlicht in: | Journal of microbiological methods 2013-01, Vol.92 (1), p.64-72 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antibiotic resistance due to the inappropriate use of antimicrobials is one of the most critical public health problems worldwide. A major factor underlying the unnecessary use of antibiotics is the lack of rapid and accurate diagnostic tests. Therefore, we aimed to develop a novel rapid flow cytometric method for distinguishing between febrile bacterial and viral infections.
In this prospective comparative study, quantitative flow cytometric analysis of FcγRII/CD32, CR1/CD35, MHC Class I receptor (MHCI), and C5aR/CD88 on human phagocytes was performed in 286 hospitalized febrile patients with suspected infection. After using microbiological and serological detection methods, or clinical diagnosis, 205 patients were identified with either bacterial (n=136) or viral (n=69) infection. Receptor data from patients were compared to those of 50 healthy controls.
We developed a flow cytometric marker of local and systemic bacterial infections designated “bacterial infection score (BIS)” incorporating the quantitative analysis of FcγRII/CD32, CR1/CD35, C5aR/CD88 and MHCI on neutrophils and/or monocytes, which displays 91% sensitivity and 92% specificity in distinguishing between microbiologically confirmed bacterial (n=77) and serologically confirmed viral infections (n=61) within 1h. The BIS method was effectively applied to distinguish between bacterial and viral (pandemic H1N1 influenza) pneumonia cases with 96% sensitivity and 92% specificity.
We propose that the rapid BIS test can assist physicians in deciding whether antibiotic treatment is necessary, thus reducing unnecessary antimicrobial use.
► We present here a novel flow cytometric marker of bacterial infection. ► Rapid and reliable differentiation between febrile bacterial and viral infections ► Diagnostic yield of measured individual variables increases upon combination. |
---|---|
ISSN: | 0167-7012 1872-8359 |
DOI: | 10.1016/j.mimet.2012.11.005 |