Hydrogen environment embrittlement of stable austenitic steels
Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the rol...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2012-11, Vol.37 (21), p.16231-16246 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16246 |
---|---|
container_issue | 21 |
container_start_page | 16231 |
container_title | International journal of hydrogen energy |
container_volume | 37 |
creator | Michler, Thorsten San Marchi, Chris Naumann, Jörg Weber, Sebastian Martin, Mauro |
description | Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels.
► The effect of hydrogen on tensile ductility was low in steels with high initial portion of dislocation cross slip. ► The effect of hydrogen on tensile ductility was high in steels with other primary deformation modes. ► The effect of hydrogen on tensile ductility was independent of the stacking fault energy. ► Martensitic transformation is not a sufficient explanation for HEE of austenitic steels. |
doi_str_mv | 10.1016/j.ijhydene.2012.08.071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266755447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319912018733</els_id><sourcerecordid>1266755447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1efa9bf31629e14eac0b6092d7ce20a00ba31e1b8e2a7ae434229920faa98c153</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BelF8NI6SdOmuYiyqCsseNFzSNOpprTpmmQX9t_bdVevnoYZnpmXeQi5opBRoOVtl9nuc9ugw4wBZRlUGQh6RGa0EjLNeSWOyQzyEtKcSnlKzkLoAKgALmfkbrFt_PiBLkG3sX50A7qY4FB7G2OPP93YJiHqusdEr0NEZ6M10wSxDxfkpNV9wMtDPSfvT49v80W6fH1-mT8sU5OLIqYUWy3rNqclk0g5agN1CZI1wiADDVDrnCKtK2RaaOQ5Z0xKBq3WsjK0yM_Jzf7uyo9fawxRDTYY7HvtcFwHRVlZiqLgXExouUeNH0Pw2KqVt4P2W0VB7YSpTv0KUzthCio1CZsWrw8ZOhjdt147Y8PfNiv5FAF84u733PQ_bix6FYxFZ7CxHk1UzWj_i_oGVNaFdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266755447</pqid></control><display><type>article</type><title>Hydrogen environment embrittlement of stable austenitic steels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Michler, Thorsten ; San Marchi, Chris ; Naumann, Jörg ; Weber, Sebastian ; Martin, Mauro</creator><creatorcontrib>Michler, Thorsten ; San Marchi, Chris ; Naumann, Jörg ; Weber, Sebastian ; Martin, Mauro</creatorcontrib><description>Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels.
► The effect of hydrogen on tensile ductility was low in steels with high initial portion of dislocation cross slip. ► The effect of hydrogen on tensile ductility was high in steels with other primary deformation modes. ► The effect of hydrogen on tensile ductility was independent of the stacking fault energy. ► Martensitic transformation is not a sufficient explanation for HEE of austenitic steels.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2012.08.071</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alloy steels ; Applied sciences ; Austenitic stainless steel ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Hadfield ; Hydrogen environment embrittlement ; Incoloy DS ; Martensitic transformation ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Transport and storage of energy ; TWIP</subject><ispartof>International journal of hydrogen energy, 2012-11, Vol.37 (21), p.16231-16246</ispartof><rights>2012 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1efa9bf31629e14eac0b6092d7ce20a00ba31e1b8e2a7ae434229920faa98c153</citedby><cites>FETCH-LOGICAL-c375t-1efa9bf31629e14eac0b6092d7ce20a00ba31e1b8e2a7ae434229920faa98c153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2012.08.071$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26467504$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Michler, Thorsten</creatorcontrib><creatorcontrib>San Marchi, Chris</creatorcontrib><creatorcontrib>Naumann, Jörg</creatorcontrib><creatorcontrib>Weber, Sebastian</creatorcontrib><creatorcontrib>Martin, Mauro</creatorcontrib><title>Hydrogen environment embrittlement of stable austenitic steels</title><title>International journal of hydrogen energy</title><description>Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels.
► The effect of hydrogen on tensile ductility was low in steels with high initial portion of dislocation cross slip. ► The effect of hydrogen on tensile ductility was high in steels with other primary deformation modes. ► The effect of hydrogen on tensile ductility was independent of the stacking fault energy. ► Martensitic transformation is not a sufficient explanation for HEE of austenitic steels.</description><subject>Alloy steels</subject><subject>Applied sciences</subject><subject>Austenitic stainless steel</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Hadfield</subject><subject>Hydrogen environment embrittlement</subject><subject>Incoloy DS</subject><subject>Martensitic transformation</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Transport and storage of energy</subject><subject>TWIP</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BelF8NI6SdOmuYiyqCsseNFzSNOpprTpmmQX9t_bdVevnoYZnpmXeQi5opBRoOVtl9nuc9ugw4wBZRlUGQh6RGa0EjLNeSWOyQzyEtKcSnlKzkLoAKgALmfkbrFt_PiBLkG3sX50A7qY4FB7G2OPP93YJiHqusdEr0NEZ6M10wSxDxfkpNV9wMtDPSfvT49v80W6fH1-mT8sU5OLIqYUWy3rNqclk0g5agN1CZI1wiADDVDrnCKtK2RaaOQ5Z0xKBq3WsjK0yM_Jzf7uyo9fawxRDTYY7HvtcFwHRVlZiqLgXExouUeNH0Pw2KqVt4P2W0VB7YSpTv0KUzthCio1CZsWrw8ZOhjdt147Y8PfNiv5FAF84u733PQ_bix6FYxFZ7CxHk1UzWj_i_oGVNaFdQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Michler, Thorsten</creator><creator>San Marchi, Chris</creator><creator>Naumann, Jörg</creator><creator>Weber, Sebastian</creator><creator>Martin, Mauro</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SP</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Hydrogen environment embrittlement of stable austenitic steels</title><author>Michler, Thorsten ; San Marchi, Chris ; Naumann, Jörg ; Weber, Sebastian ; Martin, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1efa9bf31629e14eac0b6092d7ce20a00ba31e1b8e2a7ae434229920faa98c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloy steels</topic><topic>Applied sciences</topic><topic>Austenitic stainless steel</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Hadfield</topic><topic>Hydrogen environment embrittlement</topic><topic>Incoloy DS</topic><topic>Martensitic transformation</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Transport and storage of energy</topic><topic>TWIP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michler, Thorsten</creatorcontrib><creatorcontrib>San Marchi, Chris</creatorcontrib><creatorcontrib>Naumann, Jörg</creatorcontrib><creatorcontrib>Weber, Sebastian</creatorcontrib><creatorcontrib>Martin, Mauro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michler, Thorsten</au><au>San Marchi, Chris</au><au>Naumann, Jörg</au><au>Weber, Sebastian</au><au>Martin, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen environment embrittlement of stable austenitic steels</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>37</volume><issue>21</issue><spage>16231</spage><epage>16246</epage><pages>16231-16246</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels.
► The effect of hydrogen on tensile ductility was low in steels with high initial portion of dislocation cross slip. ► The effect of hydrogen on tensile ductility was high in steels with other primary deformation modes. ► The effect of hydrogen on tensile ductility was independent of the stacking fault energy. ► Martensitic transformation is not a sufficient explanation for HEE of austenitic steels.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2012.08.071</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2012-11, Vol.37 (21), p.16231-16246 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266755447 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alloy steels Applied sciences Austenitic stainless steel Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Hadfield Hydrogen environment embrittlement Incoloy DS Martensitic transformation Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Transport and storage of energy TWIP |
title | Hydrogen environment embrittlement of stable austenitic steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20environment%20embrittlement%20of%20stable%20austenitic%20steels&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Michler,%20Thorsten&rft.date=2012-11-01&rft.volume=37&rft.issue=21&rft.spage=16231&rft.epage=16246&rft.pages=16231-16246&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2012.08.071&rft_dat=%3Cproquest_cross%3E1266755447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266755447&rft_id=info:pmid/&rft_els_id=S0360319912018733&rfr_iscdi=true |