Hydrogen environment embrittlement of stable austenitic steels

Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the rol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2012-11, Vol.37 (21), p.16231-16246
Hauptverfasser: Michler, Thorsten, San Marchi, Chris, Naumann, Jörg, Weber, Sebastian, Martin, Mauro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16246
container_issue 21
container_start_page 16231
container_title International journal of hydrogen energy
container_volume 37
creator Michler, Thorsten
San Marchi, Chris
Naumann, Jörg
Weber, Sebastian
Martin, Mauro
description Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels. ► The effect of hydrogen on tensile ductility was low in steels with high initial portion of dislocation cross slip. ► The effect of hydrogen on tensile ductility was high in steels with other primary deformation modes. ► The effect of hydrogen on tensile ductility was independent of the stacking fault energy. ► Martensitic transformation is not a sufficient explanation for HEE of austenitic steels.
doi_str_mv 10.1016/j.ijhydene.2012.08.071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266755447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319912018733</els_id><sourcerecordid>1266755447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1efa9bf31629e14eac0b6092d7ce20a00ba31e1b8e2a7ae434229920faa98c153</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BelF8NI6SdOmuYiyqCsseNFzSNOpprTpmmQX9t_bdVevnoYZnpmXeQi5opBRoOVtl9nuc9ugw4wBZRlUGQh6RGa0EjLNeSWOyQzyEtKcSnlKzkLoAKgALmfkbrFt_PiBLkG3sX50A7qY4FB7G2OPP93YJiHqusdEr0NEZ6M10wSxDxfkpNV9wMtDPSfvT49v80W6fH1-mT8sU5OLIqYUWy3rNqclk0g5agN1CZI1wiADDVDrnCKtK2RaaOQ5Z0xKBq3WsjK0yM_Jzf7uyo9fawxRDTYY7HvtcFwHRVlZiqLgXExouUeNH0Pw2KqVt4P2W0VB7YSpTv0KUzthCio1CZsWrw8ZOhjdt147Y8PfNiv5FAF84u733PQ_bix6FYxFZ7CxHk1UzWj_i_oGVNaFdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266755447</pqid></control><display><type>article</type><title>Hydrogen environment embrittlement of stable austenitic steels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Michler, Thorsten ; San Marchi, Chris ; Naumann, Jörg ; Weber, Sebastian ; Martin, Mauro</creator><creatorcontrib>Michler, Thorsten ; San Marchi, Chris ; Naumann, Jörg ; Weber, Sebastian ; Martin, Mauro</creatorcontrib><description>Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels. ► The effect of hydrogen on tensile ductility was low in steels with high initial portion of dislocation cross slip. ► The effect of hydrogen on tensile ductility was high in steels with other primary deformation modes. ► The effect of hydrogen on tensile ductility was independent of the stacking fault energy. ► Martensitic transformation is not a sufficient explanation for HEE of austenitic steels.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2012.08.071</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alloy steels ; Applied sciences ; Austenitic stainless steel ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Hadfield ; Hydrogen environment embrittlement ; Incoloy DS ; Martensitic transformation ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Transport and storage of energy ; TWIP</subject><ispartof>International journal of hydrogen energy, 2012-11, Vol.37 (21), p.16231-16246</ispartof><rights>2012 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1efa9bf31629e14eac0b6092d7ce20a00ba31e1b8e2a7ae434229920faa98c153</citedby><cites>FETCH-LOGICAL-c375t-1efa9bf31629e14eac0b6092d7ce20a00ba31e1b8e2a7ae434229920faa98c153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2012.08.071$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26467504$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Michler, Thorsten</creatorcontrib><creatorcontrib>San Marchi, Chris</creatorcontrib><creatorcontrib>Naumann, Jörg</creatorcontrib><creatorcontrib>Weber, Sebastian</creatorcontrib><creatorcontrib>Martin, Mauro</creatorcontrib><title>Hydrogen environment embrittlement of stable austenitic steels</title><title>International journal of hydrogen energy</title><description>Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels. ► The effect of hydrogen on tensile ductility was low in steels with high initial portion of dislocation cross slip. ► The effect of hydrogen on tensile ductility was high in steels with other primary deformation modes. ► The effect of hydrogen on tensile ductility was independent of the stacking fault energy. ► Martensitic transformation is not a sufficient explanation for HEE of austenitic steels.</description><subject>Alloy steels</subject><subject>Applied sciences</subject><subject>Austenitic stainless steel</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Hadfield</subject><subject>Hydrogen environment embrittlement</subject><subject>Incoloy DS</subject><subject>Martensitic transformation</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Transport and storage of energy</subject><subject>TWIP</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BelF8NI6SdOmuYiyqCsseNFzSNOpprTpmmQX9t_bdVevnoYZnpmXeQi5opBRoOVtl9nuc9ugw4wBZRlUGQh6RGa0EjLNeSWOyQzyEtKcSnlKzkLoAKgALmfkbrFt_PiBLkG3sX50A7qY4FB7G2OPP93YJiHqusdEr0NEZ6M10wSxDxfkpNV9wMtDPSfvT49v80W6fH1-mT8sU5OLIqYUWy3rNqclk0g5agN1CZI1wiADDVDrnCKtK2RaaOQ5Z0xKBq3WsjK0yM_Jzf7uyo9fawxRDTYY7HvtcFwHRVlZiqLgXExouUeNH0Pw2KqVt4P2W0VB7YSpTv0KUzthCio1CZsWrw8ZOhjdt147Y8PfNiv5FAF84u733PQ_bix6FYxFZ7CxHk1UzWj_i_oGVNaFdQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Michler, Thorsten</creator><creator>San Marchi, Chris</creator><creator>Naumann, Jörg</creator><creator>Weber, Sebastian</creator><creator>Martin, Mauro</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SP</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Hydrogen environment embrittlement of stable austenitic steels</title><author>Michler, Thorsten ; San Marchi, Chris ; Naumann, Jörg ; Weber, Sebastian ; Martin, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1efa9bf31629e14eac0b6092d7ce20a00ba31e1b8e2a7ae434229920faa98c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloy steels</topic><topic>Applied sciences</topic><topic>Austenitic stainless steel</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Hadfield</topic><topic>Hydrogen environment embrittlement</topic><topic>Incoloy DS</topic><topic>Martensitic transformation</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Transport and storage of energy</topic><topic>TWIP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michler, Thorsten</creatorcontrib><creatorcontrib>San Marchi, Chris</creatorcontrib><creatorcontrib>Naumann, Jörg</creatorcontrib><creatorcontrib>Weber, Sebastian</creatorcontrib><creatorcontrib>Martin, Mauro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michler, Thorsten</au><au>San Marchi, Chris</au><au>Naumann, Jörg</au><au>Weber, Sebastian</au><au>Martin, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen environment embrittlement of stable austenitic steels</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>37</volume><issue>21</issue><spage>16231</spage><epage>16246</epage><pages>16231-16246</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels. ► The effect of hydrogen on tensile ductility was low in steels with high initial portion of dislocation cross slip. ► The effect of hydrogen on tensile ductility was high in steels with other primary deformation modes. ► The effect of hydrogen on tensile ductility was independent of the stacking fault energy. ► Martensitic transformation is not a sufficient explanation for HEE of austenitic steels.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2012.08.071</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2012-11, Vol.37 (21), p.16231-16246
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1266755447
source Access via ScienceDirect (Elsevier)
subjects Alloy steels
Applied sciences
Austenitic stainless steel
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Hadfield
Hydrogen environment embrittlement
Incoloy DS
Martensitic transformation
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Transport and storage of energy
TWIP
title Hydrogen environment embrittlement of stable austenitic steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20environment%20embrittlement%20of%20stable%20austenitic%20steels&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Michler,%20Thorsten&rft.date=2012-11-01&rft.volume=37&rft.issue=21&rft.spage=16231&rft.epage=16246&rft.pages=16231-16246&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2012.08.071&rft_dat=%3Cproquest_cross%3E1266755447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266755447&rft_id=info:pmid/&rft_els_id=S0360319912018733&rfr_iscdi=true