The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source

The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form ∂ u ∂ t = d i v ( ρ ( x ) u m − 1 | D u | λ − 1 D u ) + u p is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2010-10, Vol.73 (7), p.2310-2323
Hauptverfasser: Cianci, P., Martynenko, A.V., Tedeev, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2323
container_issue 7
container_start_page 2310
container_title Nonlinear analysis
container_volume 73
creator Cianci, P.
Martynenko, A.V.
Tedeev, A.F.
description The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form ∂ u ∂ t = d i v ( ρ ( x ) u m − 1 | D u | λ − 1 D u ) + u p is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a solution are obtained in the case of global solvability. A sharp universal (i.e., independent of the initial function) estimate of a solution near the blow-up time is obtained.
doi_str_mv 10.1016/j.na.2010.06.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266744382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X10004013</els_id><sourcerecordid>1266744382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2d6ce777fd2fbb851026038862acda42c1557bcc3d322d01187d5331ca11f8d33</originalsourceid><addsrcrecordid>eNp1UE1LJDEQDcsu7Kzr3WMuC156zMd0utmbiO4KghcX9haqKxUnQ0_SJt2K_94MI948FEXBe6_ee4ydSbGWQpqL3TrCWol6CrMWynxhK9l3ummVbL-yldBGNe3G_P_OfpSyE0LITpsVCw9b4sOYXppl4tOWYtrXidynzB09UqQMM_EJMgxpDMjpaYE5pFj4S5i3_BlygGEkjom8DxgozoVDdLyqjCESZF7SkpF-sm8exkKn7_uE_bu5frj629zd_7m9urxrULfd3ChnkLqu8075YehbWbMI3fdGATrYKJRt2w2I2mmlnJA1pGu1lghS-t5pfcLOj7pTTk8LldnuQ0EaR4iUlmKlMqbbbHSvKlQcoZhTKZm8nXLYQ361UthDq3ZnI9hDq1YYW51Uyq93dSgIo88QMZQPntKiutV9xf0-4qhGfQ6UbTl0g-RCJpytS-HzJ28OMo0v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266744382</pqid></control><display><type>article</type><title>The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source</title><source>Elsevier ScienceDirect Journals</source><creator>Cianci, P. ; Martynenko, A.V. ; Tedeev, A.F.</creator><creatorcontrib>Cianci, P. ; Martynenko, A.V. ; Tedeev, A.F.</creatorcontrib><description>The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form ∂ u ∂ t = d i v ( ρ ( x ) u m − 1 | D u | λ − 1 D u ) + u p is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a solution are obtained in the case of global solvability. A sharp universal (i.e., independent of the initial function) estimate of a solution near the blow-up time is obtained.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2010.06.026</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Blow-up solution ; Cauchy problem ; Degenerate parabolic equation ; Estimates ; Exact sciences and technology ; Existence and nonexistence theorems ; Mathematical analysis ; Mathematics ; Nonlinearity ; Partial differential equations ; Sciences and techniques of general use ; Source term ; Variable coefficients</subject><ispartof>Nonlinear analysis, 2010-10, Vol.73 (7), p.2310-2323</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2d6ce777fd2fbb851026038862acda42c1557bcc3d322d01187d5331ca11f8d33</citedby><cites>FETCH-LOGICAL-c357t-2d6ce777fd2fbb851026038862acda42c1557bcc3d322d01187d5331ca11f8d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2010.06.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23060338$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cianci, P.</creatorcontrib><creatorcontrib>Martynenko, A.V.</creatorcontrib><creatorcontrib>Tedeev, A.F.</creatorcontrib><title>The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source</title><title>Nonlinear analysis</title><description>The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form ∂ u ∂ t = d i v ( ρ ( x ) u m − 1 | D u | λ − 1 D u ) + u p is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a solution are obtained in the case of global solvability. A sharp universal (i.e., independent of the initial function) estimate of a solution near the blow-up time is obtained.</description><subject>Blow-up solution</subject><subject>Cauchy problem</subject><subject>Degenerate parabolic equation</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Existence and nonexistence theorems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Source term</subject><subject>Variable coefficients</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LJDEQDcsu7Kzr3WMuC156zMd0utmbiO4KghcX9haqKxUnQ0_SJt2K_94MI948FEXBe6_ee4ydSbGWQpqL3TrCWol6CrMWynxhK9l3ummVbL-yldBGNe3G_P_OfpSyE0LITpsVCw9b4sOYXppl4tOWYtrXidynzB09UqQMM_EJMgxpDMjpaYE5pFj4S5i3_BlygGEkjom8DxgozoVDdLyqjCESZF7SkpF-sm8exkKn7_uE_bu5frj629zd_7m9urxrULfd3ChnkLqu8075YehbWbMI3fdGATrYKJRt2w2I2mmlnJA1pGu1lghS-t5pfcLOj7pTTk8LldnuQ0EaR4iUlmKlMqbbbHSvKlQcoZhTKZm8nXLYQ361UthDq3ZnI9hDq1YYW51Uyq93dSgIo88QMZQPntKiutV9xf0-4qhGfQ6UbTl0g-RCJpytS-HzJ28OMo0v</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Cianci, P.</creator><creator>Martynenko, A.V.</creator><creator>Tedeev, A.F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source</title><author>Cianci, P. ; Martynenko, A.V. ; Tedeev, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2d6ce777fd2fbb851026038862acda42c1557bcc3d322d01187d5331ca11f8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Blow-up solution</topic><topic>Cauchy problem</topic><topic>Degenerate parabolic equation</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Existence and nonexistence theorems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Source term</topic><topic>Variable coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cianci, P.</creatorcontrib><creatorcontrib>Martynenko, A.V.</creatorcontrib><creatorcontrib>Tedeev, A.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cianci, P.</au><au>Martynenko, A.V.</au><au>Tedeev, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source</atitle><jtitle>Nonlinear analysis</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>73</volume><issue>7</issue><spage>2310</spage><epage>2323</epage><pages>2310-2323</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form ∂ u ∂ t = d i v ( ρ ( x ) u m − 1 | D u | λ − 1 D u ) + u p is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a solution are obtained in the case of global solvability. A sharp universal (i.e., independent of the initial function) estimate of a solution near the blow-up time is obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2010.06.026</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2010-10, Vol.73 (7), p.2310-2323
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1266744382
source Elsevier ScienceDirect Journals
subjects Blow-up solution
Cauchy problem
Degenerate parabolic equation
Estimates
Exact sciences and technology
Existence and nonexistence theorems
Mathematical analysis
Mathematics
Nonlinearity
Partial differential equations
Sciences and techniques of general use
Source term
Variable coefficients
title The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20blow-up%20phenomenon%20for%20degenerate%20parabolic%20equations%20with%20variable%20coefficients%20and%20nonlinear%20source&rft.jtitle=Nonlinear%20analysis&rft.au=Cianci,%20P.&rft.date=2010-10-01&rft.volume=73&rft.issue=7&rft.spage=2310&rft.epage=2323&rft.pages=2310-2323&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2010.06.026&rft_dat=%3Cproquest_cross%3E1266744382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266744382&rft_id=info:pmid/&rft_els_id=S0362546X10004013&rfr_iscdi=true