The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source

The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form ∂ u ∂ t = d i v ( ρ ( x ) u m − 1 | D u | λ − 1 D u ) + u p is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2010-10, Vol.73 (7), p.2310-2323
Hauptverfasser: Cianci, P., Martynenko, A.V., Tedeev, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form ∂ u ∂ t = d i v ( ρ ( x ) u m − 1 | D u | λ − 1 D u ) + u p is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a solution are obtained in the case of global solvability. A sharp universal (i.e., independent of the initial function) estimate of a solution near the blow-up time is obtained.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2010.06.026