The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source
The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form ∂ u ∂ t = d i v ( ρ ( x ) u m − 1 | D u | λ − 1 D u ) + u p is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2010-10, Vol.73 (7), p.2310-2323 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Cauchy problem for a degenerate parabolic equation with a source and variable coefficient of the form
∂
u
∂
t
=
d
i
v
(
ρ
(
x
)
u
m
−
1
|
D
u
|
λ
−
1
D
u
)
+
u
p
is studied. Global in time existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of a solution are obtained in the case of global solvability. A sharp universal (i.e., independent of the initial function) estimate of a solution near the blow-up time is obtained. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2010.06.026 |