Size exclusion chromatography of branched polymers: Star and comb polymers
Monte Carlo simulations were conducted to estimate the elution curve of size exclusion chromatography (SEC). The present simulation can be applied to various types of branched polymers, as long as the kinetic mechanism of nonlinear polymer formation is given. We considered two types of detector syst...
Gespeichert in:
Veröffentlicht in: | Macromolecular theory and simulations 1999-09, Vol.8 (5), p.513-519 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monte Carlo simulations were conducted to estimate the elution curve of size exclusion chromatography (SEC). The present simulation can be applied to various types of branched polymers, as long as the kinetic mechanism of nonlinear polymer formation is given. We considered two types of detector systems, (1) a detector that measures the polymer concentration in the elution volume to determine the calibrated molecular weights, such as by using the differential refractive index detector (RI), and (2) a detector that determines the weight‐average molecular weight of polymers within the elution volume directly, such as a light scattering photometer (LS). For polydisperse star polymers, both detector systems tend to give a reasonable estimate of the true molecular weight distribution (MWD). On the other hand, for comb‐branched polymers, the RI detector underestimates the molecular weight of branched polymers significantly. The LS detector system improves the measured MWD, but still is not exact. The present simulation technique promises to establish various types of complicated reaction mechanisms for nonlinear polymer formation by using the SEC data quantitatively. In addition, the present technique could be used to reinvestigate a large amount of SEC data obtained up to the present to estimate the true MWD. |
---|---|
ISSN: | 1022-1344 1521-3919 |
DOI: | 10.1002/(SICI)1521-3919(19990901)8:5<513::AID-MATS513>3.0.CO;2-G |