Novel High Step-Up DC-DC Converter for Distributed Generation System
In this paper, a novel high step-up dc-dc converter for distributed generation systems is proposed. The concept is to utilize two capacitors and one coupled inductor. The two capacitors are charged in parallel during the switch-off period and are discharged in series during the switch-on period by t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2013-04, Vol.60 (4), p.1473-1482 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a novel high step-up dc-dc converter for distributed generation systems is proposed. The concept is to utilize two capacitors and one coupled inductor. The two capacitors are charged in parallel during the switch-off period and are discharged in series during the switch-on period by the energy stored in the coupled inductor to achieve a high step-up voltage gain. In addition, the leakage-inductor energy of the coupled inductor is recycled with a passive clamp circuit. Thus, the voltage stress on the main switch is reduced. The switch with low resistance R DS(ON) can be adopted to reduce the conduction loss. In addition, the reverse-recovery problem of the diodes is alleviated, and thus, the efficiency can be further improved. The operating principle and steady-state analyses are discussed in detail. Finally, a prototype circuit with 24-V input voltage, 400-V output voltage, and 200-W output power is implemented in the laboratory to verify the performance of the proposed converter. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2011.2107721 |