Three-dimensional reconstruction of laser-imploded targets from simulated pinhole images
This paper proposes an integral method to achieve a more accurate weighting matrix that makes very positive contributions to the image reconstruction in inertial confinement fusion research. Standard algebraic reconstruction techniques with a positivity constraint included are utilized. The final no...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2012-11, Vol.51 (32), p.7820-7825 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an integral method to achieve a more accurate weighting matrix that makes very positive contributions to the image reconstruction in inertial confinement fusion research. Standard algebraic reconstruction techniques with a positivity constraint included are utilized. The final normalized mean-square error between the simulated and reconstructed projection images is 0.000365%, which is a nearly perfect result, indicating that the weighting matrix is very important. Compared with the error between the simulated and reconstructed phantoms, which is 2.35%, it seems that the improvement of the accuracy of the projection image does not mean the improvement of the phantom. The proposed method can reconstruct a simulated laser-imploded target consisting of 100×100×100 voxels. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.51.007820 |