Ultrafast X-ray pulse characterization at free-electron lasers

The ability to fully characterize ultrashort, ultra-intense X-ray pulses at free-electron lasers (FELs) will be crucial in experiments ranging from single-molecule imaging to extreme-timescale X-ray science. This issue is especially important at current-generation FELs, which are primarily based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2012-12, Vol.6 (12), p.852-857
Hauptverfasser: Grguraš, I., Maier, A. R., Behrens, C., Mazza, T., Kelly, T. J., Radcliffe, P., Düsterer, S., Kazansky, A. K., Kabachnik, N. M., Tschentscher, Th, Costello, J. T., Meyer, M., Hoffmann, M. C., Schlarb, H., Cavalieri, A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to fully characterize ultrashort, ultra-intense X-ray pulses at free-electron lasers (FELs) will be crucial in experiments ranging from single-molecule imaging to extreme-timescale X-ray science. This issue is especially important at current-generation FELs, which are primarily based on self-amplified spontaneous emission and radiate with parameters that fluctuate strongly from pulse to pulse. Using single-cycle terahertz pulses from an optical laser, we have extended the streaking techniques of attosecond metrology to measure the temporal profile of individual FEL pulses with 5 fs full-width at half-maximum accuracy, as well as their arrival on a time base synchronized to the external laser to within 6 fs r.m.s. Optical laser-driven terahertz streaking can be utilized at any X-ray photon energy and is non-invasive, allowing it to be incorporated into any pump–probe experiment, eventually characterizing pulses before and after interaction with most sample environments. Researchers use single-cycle THz pulses from an optical laser to extend streaking techniques of attosecond metrology to measure the temporal profile and arrival time of individual FEL pulses with ∼5 fs precision.
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2012.276