On constructive models of theories with linear Rudin-Keisler ordering

It is known that the class of Ehrenfeucht theories admits a syntactical characterization and that a finite (Rudin-Keisler) pre-ordering and a function mapping this pre-ordering to naturals play the role of parameters in this characterization. In the article, we construct for any finite linear orderi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2012-08, Vol.22 (4), p.793-805
1. Verfasser: Gavryushkin, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that the class of Ehrenfeucht theories admits a syntactical characterization and that a finite (Rudin-Keisler) pre-ordering and a function mapping this pre-ordering to naturals play the role of parameters in this characterization. In the article, we construct for any finite linear ordering L, a hereditary decidable Ehrenfeucht theory T possessing L as its Rudin-Keisler pre-ordering. Also, we discuss decidable and computable models of such theories.
ISSN:0955-792X
1465-363X
DOI:10.1093/logcom/exq043