On constructive models of theories with linear Rudin-Keisler ordering
It is known that the class of Ehrenfeucht theories admits a syntactical characterization and that a finite (Rudin-Keisler) pre-ordering and a function mapping this pre-ordering to naturals play the role of parameters in this characterization. In the article, we construct for any finite linear orderi...
Gespeichert in:
Veröffentlicht in: | Journal of logic and computation 2012-08, Vol.22 (4), p.793-805 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is known that the class of Ehrenfeucht theories admits a syntactical characterization and that a finite (Rudin-Keisler) pre-ordering and a function mapping this pre-ordering to naturals play the role of parameters in this characterization. In the article, we construct for any finite linear ordering L, a hereditary decidable Ehrenfeucht theory T possessing L as its Rudin-Keisler pre-ordering. Also, we discuss decidable and computable models of such theories. |
---|---|
ISSN: | 0955-792X 1465-363X |
DOI: | 10.1093/logcom/exq043 |