Relating spatial and temporal scales of climate and ocean variability to survival of Pacific Northwest Chinook salmon (Oncorhynchus tshawytscha)

Pacific Northwest Chinook, Oncorhynchus tshawytscha, have exhibited a high degree of variability in smolt‐to‐adult survival over the past three decades. This variability is summarized for 22 Pacific Northwest stocks and analyzed using generalized linear modeling techniques. Results indicate that sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fisheries oceanography 2013-01, Vol.22 (1), p.14-31
Hauptverfasser: SHARMA, RISHI, VÉLEZ-ESPINO, LUIS A., WERTHEIMER, ALEX C., MANTUA, NATHAN, FRANCIS, ROBERT C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pacific Northwest Chinook, Oncorhynchus tshawytscha, have exhibited a high degree of variability in smolt‐to‐adult survival over the past three decades. This variability is summarized for 22 Pacific Northwest stocks and analyzed using generalized linear modeling techniques. Results indicate that survival can be grouped into eight distinct regional clusters: (1) Alaska, Northern BC and North Georgia Strait; (2) Georgia Strait; (3) Lower Fraser River and West Coast Vancouver Island; (4) Puget Sound and Hood Canal; (5) Lower Columbia Tules; (6) Columbia Upriver Brights, Willamette and Cowlitz; (7) Oregon and Washington Coastal; and (8) Klamath River and Columbia River Summers. Further analysis for stocks within each of the eight regions indicates that local ocean conditions following the outmigration of smolts from freshwater to marine areas had a significant effect on survival for the majority of the stock groups analyzed. Our analyses of the data indicate that Pacific Northwest Chinook survival covaries on a spatial scale of 350–450 km. Lagged time series models are presented that link large‐scale tropical Pacific conditions, intermediate‐basin scale northeastern Pacific conditions, and local sea surface temperatures to survival of Pacific Northwest stocks.
ISSN:1054-6006
1365-2419
DOI:10.1111/fog.12001