Optimal temperature for malaria transmission is dramatically lower than previously predicted

The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life‐history traits to temperature, predicting optimal transmission at 31 °C....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2013-01, Vol.16 (1), p.22-30
Hauptverfasser: Mordecai, Erin A., Paaijmans, Krijn P., Johnson, Leah R., Balzer, Christian, Ben-Horin, Tal, de Moor, Emily, McNally, Amy, Pawar, Samraat, Ryan, Sadie J., Smith, Thomas C., Lafferty, Kevin D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life‐history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal‐response models will aid in understanding the effects of current and future temperature regimes on disease transmission.
ISSN:1461-023X
1461-0248
DOI:10.1111/ele.12015